

Distributed and
Parallel Systems

In Focus:
 Desktop Grid Computing

Distributed and
Parallel Systems

In Focus:
 Desktop Grid Computing

Edited by

Péter Kacsuk
Róbert Lovas
Zsolt Németh

MTA SZTAKI, Hungary

1 3

Editors:
Péter Kacsuk
MTA SZTAKI
Computer & Automation Research Institute
P.O.Box 63
Budapest, H-1518 Hungary

Róbert Lovas
MTA SZTAKI
Computer & Automation Research Institute
P.O.Box 63
Budapest, H-1518 Hungary

Zsolt Németh
MTA SZTAKI
Computer & Automation Research Institute
P.O.Box 63
Budapest, H-1518 Hungary

Library of Congress Control Number: 2008933304

ISBN-13: 978-0-387-79447-1 e-ISBN-13: 978-0-387-79448-8

Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper.

springer.com

Contents

Preface vii

Program Committee and Additional Reviewers ix

Part I: Desktop Grids 1

Enabling Java applications for BOINC with DC-API 3
Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton, Péter Kacsuk

Bridging the Data Management Gap Between Service and Desktop Grids 13
Ian Kelley, Ian Taylor

Utilizing the EGEE Infrastructure for Desktop Grids 27
Zoltan Farkas, Peter Kacsuk, Manuel Rubio

Integrating Condor Desktop Clusters with Grid 37
Konstantinos Georgakopoulos, Konstantinos Margaritis

Prediction of the Jobs Execution on the Community Grid with added
network latency 43
Jakub Jurkiewicz, Piotr Ba a, Krzysztof Nowi ski

Part II: Grid Applications 49

The Porting of a Medical Grid Application from Globus 4 to the gLite
Middleware 51
Karoly Bosa, Wolfgang Schreiner

Euro-Mediterranean Centre for Climate Change Data Grid 63
Sandro Fiore, Salvatore Vadacca, Alessandro Negro, Giovanni Aloisio

Towards a GRID-Based digital library management system 77
Gheorghe Sebestyen, Doina Banciu, Tunde Balint, Bogdan Moscaliuc,
Agnes Sebestyen

Part III: Grid Resource Management and Scheduling 91

Fair Execution Time Estimation Scheduling in Computational Grids 93
Eleni Dafouli, Panagiotis Kokkinos, Emmanouel Varvarigos

Multiprocessor Task Scheduling using a new Prioritizing Genetic Algorithm
based on number of Task Children 105
Amir Masoud Rahmani, Marjan Abdyazdan

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 115
Tarek Helmy, Irfan Ahmad, Aleem Alvi

vi Contents

An Agent Based Architecture for DAG Scheduling 129
Catalin Leordeanu, Florin Pop, Corina Stratan, Valentin Cristea

Part IV: Grid Programming Environments 141

Workflows in a secure environment 143
Norbert Podhorszki, Scott Klasky

High-level User Interface for Accessing Database Resources on the Grid 155
Tamas Kiss, Tamas Kukla

Part V: Miscellaneous Grid-related Issues 165

A supporting infrastructure for evaluating QoS-specific activities in
SOA-based Grids 167
Ignacio Blanquer, Vicente Hernandez, Damia Segrelles, Erik Torres

Checkpointing of Parallel Applications in a Grid Environment 179
Kreeteeraj Sajadah, Gabor Terstyansky, Stephen Winter, Peter Kacsuk

The Grid Data Source Engine Batch Query System 189
Giuliano Taffoni, Edgardo Ambrosi, Claudio Vuerli, Fabio Pasian

Reputation-Policy Trust Model for Grid Resource Selection 195
Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter, Peter Kacsuk

Author Index 207

Preface

The seventh Distributed and Parallel Systems conference (DAPSYS) is organized
by MTA SZTAKI Computer and Automation Research Institute in Debrecen. The
series of DAPSYS events started as a small regional meeting early in the nineties,
and since then it evolved a lot and became an acknowledged international scien-
tific event. The scope of the event has changed as well during the years following
the new trends in technology. The first event was dedicated to transputers whereas
in recent years, it is tagged with cluster and grid computing.

This year the whole conference was devoted to grid computing. Since desktop grid
systems were underrepresented at other conferences that deal with grid computing
we decided to give a special emphasis on desktop grids. According to this, David
Anderson was invited to give a keynote talk on BOINC systems, a large session
was organized with talks on various aspects of desktop grid systems and finally,
the EDGeS User and Industry Forum had also got a special session where talks
and discussions addressed the problem of how to integrate service grids and desk-
top grids.

The papers presented in this volume give a good overview of recent advances in
various aspects of grid computing. The proceedings is composed of five parts ac-
cording to the major topics of the conference - albeit they cover a much broader
range in this field. Part I is devoted to various aspects of desktop grid computing.
Several papers discuss how to integrate desktop grids with existing service grids
like the EGEE grid. One of the most important aspects of grid computing is how
to port applications to the grid. Part II shows several case studies in the field of
medical grid applications, climate modelling and digital library management. Grid
resource management and scheduling is still an important issue in large production
grid systems. Part III shows several new research directions in this field. Grid pro-
gramming environments and particularly organization of grid workflow systems
represent a major issue for the grid users. Part IV shows two systems (Kepler and
P-GRADE) how to handle security issues and database resources in such work-
flow systems. Part V contains papers dealing with other important aspects of grid
computing like QoS capabilities of grids, check-pointing in grids, batch query sys-
tems and finally a reputation-policy based trust model for grid resource selection.

viii Preface

There were three invited talks at the conference delivered by David Anderson,
Denis Caromel and Márk Jelasity. David Anderson was talking on the future of
volunteer desktop grid computing that was now aimed towards the exa-scale per-
formance target. Denis Caromel gave presentation on the ProActive Parallel Suite,
a GRID Java library for parallel, distributed, and concurrent computing, also fea-
turing mobility and security in a uniform framework. ProActive aims at simplify-
ing the programming of applications that are distributed on Local Area Network
(LAN), on cluster of workstations, or on the grid. ProActive promotes a strong
NoC approach, Network On Ship, to cope seamlessly with both distributed and
shared-memory multi-core machines. Mark Jelasity explained how to combine
P2P protocols into more complex, but still self-organizing and decentralized, pro-
tocols and frameworks. He also illustrated this compositional approach via an ex-
ample application: heuristic function optimization, that was a common Grid appli-
cation for solving very hard combinatorial or real valued optimization problems.

We would like to thank the members of the Program Committee and the additional
reviewers for their work in refereeing the submitted papers and ensuring the high
quality of DAPSYS 2008. Special thanks to those who helped us beyond their du-
ties. We are grateful to Susan Lagerstrom-Fife and her assistant, Sharon Palleschi
at Springer for their endless patience and valuable support in producing this vol-
ume. The conference could have never been realized without the devoted work of
the local organizers: János Végh, Piroska Biró and Kornél Kovács. The proceed-
ings was compiled in endless hours of checking every details by the tireless Eva
Feuer. Special thanks to the webmasters Károly Göschl and Attila Csaba Marosi
and Philippe Rigaux for providing the MyReview system.

Péter Kacsuk Róbert Lovas Zsolt Németh

Program Committee and Additional Reviewers
Conference Chair:

Péter Kacsuk (MTA SZTAKI, Hungary)

PC Chairs:

Róbert Lovas and Zsolt Németh (MTA SZTAKI, Hungary)

Members:

David P. Anderson (Univ. of California, Berkeley, USA)
Artur Andrzejak (ZIB, Germany)
Marian Bubak (AGH Krakow, Poland and Amsterdam University, The
Netherlands)
Rajkumar Buyya (Univ. of Melbourne, Australia)
Beniamino Di Martino (Second Univ. of Naples, Italy)
Thomas Fahringer (Univ. of Innsbruck, Austria)
Gilles Fedak (LRI, France)
Ladislav Hluchy (II SAS, Slovakia)
Márk Jelasity (Univ. Szeged, Hungary)
Hai Jin (Huazhong Univ. of Science and Technology, China)
Zoltán Juhász (Univ. of Pannonia, Hungary)
Károly Kondorosi (Budapest Univ. of Technology and Economics,
Hungary)
Dieter Kranzlmüller (Joh. Kepler Univ. Linz, Austria)
Domenico Laforenza (ISTI-CNR, Italy)
Erwin Laure (CERN, Switzerland)
Charles Loomis (LAL/CNRS, France)
Marta Mattoso (Federal Univ. of Rio de Janeiro, Brasil)
Ludek Matyska (Masaryk University, Czech Rep.)
Miguel Cárdenas Montes (CETA-CIEMAT, Spain)
Johan Montagnat (CNRS, France)
Norbert Podhorszki (Oak Ridge National Lab, USA)
Thierry Priol (INRIA, France)
Stefan Podlipnig (Univ. of Innsbruck, Austria)
Rizos Sakellariou (Univ. Manchester, UK)
Cevat Sener (Middle East Technical University, Turkey)
Luis Silva (Univ. of Coimbra, Portugal)
Wolfgang Schreiner (RISC Linz, Austria)
Domenico Talia (Univ. Calabria, Italy)
Ian Taylor (Cardiff University, UK)
Gábor Terstyánszky (Univ. of Westminster, UK)
Ramin Yahyapour (Univ. Dortmund, Germany)

x Program Committee and Additional Reviewers

Additional reviewers

Viet Tran
Salvatore Venticinque
Song Wu
Attila Csaba Marosi
Zoltán Farkas
Jan Astalos
Giuseppe Pirro
Max Berger
Fabricio Silva
Kassian Plankensteiner
Ada Lhola Casanovas León
Stefano Marrone
Carmela Comito
Viera Sipkova
Eugenio Cesario
József Kovács
Pingpeng Yuan
Deqing Zou
Simon Ostermann
Xuanhua Shi
Sergio Cruz
Attila Kertész
Ian Kelley
Gábor Gombás
Zoltán Balaton

I
DESKTOP GRIDS

Enabling Java applications for BOINC with
DC-API

Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton and Péter Kacsuk

Abstract Desktop grids are an emerging trend converging volunteer computing and
grid computing. Unfortunately existing applications usually have to be modified in
order to run on desktop grid systems which makes them less attractive for applica-
tion developers than traditional grid systems. DC-API is simple API that is specifi-
cally targeted for desktop grid systems with the goal to provide an API which hides
the specifics of the underlying grid environment but require only minimal modifi-
cations to existing application source code. Native Java applications are not directly
supported by BOINC. In this paper we describe DC-API, and show how the lack of
Java support in BOINC is overcome with DC-API by providing an API for native
Java applications on the BOINC platform.

1 Introduction

Desktop grids are an emerging trend in grid computing. Contrary to traditional grid
systems, in desktop grids the grid system operators provide the applications and
the users of the desktop grid system provide the resources to run the applications.
Thus a major advantage of desktop grid systems is that they are able to utilize a
huge amount of resources that were not available for traditional grid computing
previously.

Users of scientific applications are usually concerned only about the amount of
computing power they can get and not about the details how a grid system provides
this computing power. Therefore, they want to develop a single application that in
turn can run on any infrastructure that provides the most appropriate resources at a
given time. Unfortunately existing applications have to be modified in order to run

Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton, Péter Kacsuk
MTA SZTAKI Computer and Automation Research Institute Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary
e-mail: {atisu, gombasg, balaton, kacsuk}@sztaki.hu

4 Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton and Péter Kacsuk

on desktop grid systems and this makes desktop grids less attractive for application
developers than traditional grid systems.

There are existing efforts like the GAT [4], SAGA [7] or DRMAA [11] for cre-
ating a unified API for grid applications. However, these are modeled after how tra-
ditional grid middlewares and batch schedulers work but this model is not adequate
for desktop grids like BOINC [5]. The above mentioned APIs are overly complex
for such a restricted environment that BOINC provides and they also fail to cover
areas like logical file name resolution, checkpoint control, redundant execution and
result validation that are required in a BOINC environment. Also the volatility of
desktop grid environments where clients may come and go at any time, there is no
guarantee that a client that started a computation will indeed finish it, presents a
problem for interface designs based on traditional job submission principles.

DC-API is a simple API that is specifically targeted for desktop grid systems.
Its goal is to provide an API that requires only minimal modification to existing
application source code, yet is able to deliver most of the power of a desktop grid
system. However, the DC-API is opaque in the sense that it can be implemented
for traditional grid systems as well therefore, applications using the DC-API could
be easily deployed on traditional grid infrastructures as well, without the need to
modify the source code of the application.

In this paper we describe how DC-API hides the specific details of a grid envi-
ronment and it’s API by an example that enables to run native Java applications on
the BOINC platform. Traditionally BOINC and it’s API only supports applications
written in Fortran, C or C++.

The paper is organized as follows. The next section discusses related work. Sec-
tion 3 describes DC-API. In section 4 we present the approach used for running
Java applications on the BOINC platform. The last section details future work and
concludes the paper.

2 Related work

The Grid Application Toolkit (GAT, [4]) was developed by the European Grid-
Lab [3] project to bridge the gap between existing grid middleware and application-
level needs. The GAT allows an application to make use of different computing en-
vironments ranging from handheld devices to supercomputers. An important prop-
erty of the GAT is the support of dynamic and self-adaptive applications. In order
to provide maximum flexibility, the GAT consists of two parts: the engine and the
adaptors. The engine provides the high-level API seen by the applications while the
adaptors provide the glue code between the engine and the grid middleware.

The Simple API for Grid Applications (SAGA, [7][8]) is an ongoing effort of the
OGF with similar goals as the GAT had. In fact, many people who contributed to the
GAT are also contributors to SAGA. SAGA aims to provide a simple, stable, and
uniform programming interface that integrates the most common grid programming

Enabling Java applications for BOINC with DC-API 5

abstractions. The key areas of SAGA are security, data management, job manage-
ment and inter-process communication.

Both the GAT and SAGA seems hard to adapt to a desktop grid environment.
First, the programming model of the desktop grid allows only master-worker appli-
cations where the functionality available for the master is completely distinct from
the functionality available for the client (for example, it is impossible for the client
to create a new job/workunit). Second, there are some areas like explicit data man-
agement or inter-process communication that the desktop grid does not support at
all. Also all the API complexity that is required to model a traditional grid system
is useless in the restricted environment the desktop grid provides. Therefore, an ap-
plication using a generic grid API would be much more complex than one using
the native desktop grid (BOINC) API which goes right against the idea of having
a uniform API in the first place. Finally, both GAT and SAGA misses functional-
ity specific to desktop grid systems like support for redundant computing, result
validation, client-side logical name resolution or checkpointing support.

The Distributed Resource Management Application API (DRMAA, [11]) is a
recommendation proposed by the Open Grid Forum [10]. Contrary to the GAT and
SAGA that aim to cover most services provided by the grid middleware, the scope
of DRMAA is limited to job submission, job monitoring and control, and retrieval
of the finished job status. The DRMAA aims to provide a uniform API for access-
ing Distributed Resource Management Systems (DRMS). Also the DRMAA lacks
support for redundant computing and result validation that is essential on a real
desktop grid environment. The DRMAA contains no support for the desktop grid
specific functionality required on the client side like logical file name resolving or
checkpointing.

The Berkeley Open Infrastructure for Network Computing (BOINC, [5]), orig-
inated from the SETI@home project, is an effort to create an open infrastructure
to serve as a base for all large-scale scientific projects that are attractive for public
interest and having computational needs so that they can use millions of personal
computers for processing their data. Today, most of the DG projects, including SZ-
TAKI Desktop Grid (SZDG, [9]), utilize BOINC because it is a well-established
free and open source platform that has already proven its feasibility and scalability
and it provides a stable base for experiments and extensions. BOINC provides the
basic facilities for a DG in which a central server provides the applications and their
input data, where clients join voluntarily, offering to download and run an applica-
tion with a set of input data. When the application has finished, the client uploads
the results to the server. BOINC manages the application executables (doing the ac-
tual work) taking into account multiple platforms as well as, keeping a record of
and scheduling the processing of workunits, optionally with redundancy (to detect
erroneous computation either, due to software or hardware failures or clients being
controlled by a malicious entity). Additionally, BOINC has support for user credits,
teams and the web-based discussion forums, relevant in large scale public projects
that are based on individuals donating their CPU time. These individuals must have a
motivation for doing this. Apart from the project having a clearly stated, supportable

6 Attila Csaba Marosi, Gabor Gomb´ as, Zolt´ an Balaton and P´ eter Kacsuk´

and visionary goal, credits provide a kind of “reward” for the received CPU time,
which leads to a competition between the users thus, generating more performance.

3 DC-API

The SZTAKI Desktop Grid is based on BOINC thus, applications using the BOINC
API can run on it. However, a simpler and easier-to-use API, the Distributed Com-
puting Application Programming Interface (DC-API), is provided. The DC-API is
the preferred way for creating applications for SZTAKI Desktop Grid. It aims to be
simple and easy to use. Just a few functions are enough to implement a working
application, but there are additional interfaces in case the application wants greater
control or wants to use more sophisticated features of the grid infrastructure.

DC-API backends exist to use the Condor job manager and BOINC as well as a
backend for the Grid Underground middleware used by the Hungarian ClusterGrid
Initiative [6]. A simple fork-based implementation that runs all workunits on the
local host is also available. The ability of running the workunits locally makes ap-
plication debugging easier. Since switching the application from using such a local
implementation to e.g. BOINC needs only a recompilation without any changes to
the source code, the complete application can be tested on the developer’s machine
before deploying it to a complex grid infrastructure.

Fig. 1 DC-API application components

To accommodate the restrictions of different grid environments and to facilitate
converting existing sequential code written by scientists not comfortable with paral-
lel programming, the DC-API supports a limited parallel programming model only.
This implies the following restrictions compared to general parallel programming:

• Master/ Worker concept: there is a designated master process running somewhere
on the grid infrastructure. The master process can submit worker processes called
workunits.

Enabling Java applications for BOINC with DC-API 7

• Every workunit is a sequential application.
• There is support for limited messaging between the master and the running

workunits. However, this it is not suitable for parallel programming, it is meant
to be used for sending status and control messages only.

• No direct communication between workunits.

Following the Master/ Worker model, DC-API applications consist of two major
components (see Figure 1): a master and one or more client applications. The master
is responsible for dividing the global input data into smaller chunks and distributing
them in the form of workunits. Interpreting the output generated by the workunits
and combining them to a global output is also the job of the master. The master
usually runs as a daemon, but it is also possible to write it so it runs periodically
(e.g. from cron), processes the outstanding events, and exits. Client applications are
simple sequential programs that take their input, perform some computation on it
and produce some output.

A typical master application written using DC-API does the following steps:

1. Initialises the DC-API master library by calling the DC initMaster function.
2. Calls the DC setResultCB function and optionally some of the DC setSub-

resultCb, DC setMessageCb, DC setSuspendCb and DC setVali-
dateCb functions, depending on the advanced features (messaging, subresults,
etc.) it wants to use.

3. In its main loop, calls the DC createWU function to create new workunits when
needed and after specifying the necessary input and output files (DC addWUInp-
ut, DC addWUOutput) it can hand them over to the grid infrastructure for pro-
cessing by calling the DC submitWU function. If the total number of workunits
is small (depending on the grid infrastructure), then the master may also create
all the workunits in advance. If the number of workunits is large, the master may
use the DC getWUNumber function to determine the current number of worku-
nits processed by the grid infrastructure, and create new workunits only if it falls
below a certain threshold.

4. Also in its main loop the master calls the DC processMasterEvents func-
tion that checks for outstanding events and invokes the appropriate callbacks. Al-
ternatively, the master may use the DC waitMasterEvent and DC waitWU-
Event functions instead of DC processMasterEvents if it prefers to re-
ceive event structures instead of using callbacks.

A typical client application performs the following steps:

1. Initializes the DC-API client library by calling the DC initClient function.
2. Identifies the location of its input/output files by calling the DC resolveFile-

Name function. Note that the client application may not assume that it can read/
create/ write any files other than the names returned by DC resolveFileName.

3. During the computation, the client should periodically call the DC check-
ClientEvent function and process the received events.

4. If possible, the client should call the DC fractionDone function with the frac-
tion of the work completed. On some grid infrastructures (e.g. BOINC) this will

8 Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton and Péter Kacsuk

allow the client’s supervisor process to show the progress of the application to
the user. Ideally the value passed to this function should be proportional to the
time elapsed so far compared to the total time that will be needed to complete the
computation.

5. The client should call the DC finishClient function at the end of the com-
putation. As a result, all output files will be sent to the master and the master will
be notified about the completion of the work unit.

4 Java support for BOINC

Running Java applications on the BOINC platform represents two problems. First,
BOINC API does not support Java, thus running an application written in Java would
either require compiling it to native code or to use a wrapper designed for legacy
(non-BOINC) applications. Second, Java requires a runtime environment on its own
(Java Runtime Environment, JRE), which may not be already deployed on any client
node or the already deployed version may not be suitable for the application. DC-
API solves the lack of Java support in BOINC API by providing a Java binding
of its API for Java applications via the Java Native Interface (JNI, [1]). JNI allows
Java code to call and be called by native applications and libraries written in other
programming languages, such as C or C++. The Java runtime deployment problem
is solved either by bundling the JRE zipped with the application (license issues
apply), or if the application is run in a Local Desktop Grid, then it can be assumed
that the appropriate runtime is already deployed. Here we present the scenario when
the Java runtime is assumed to be already deployed (see Figure 2). In this case Client
1 receives the following files as part of the application bundle:

• DC-API Java bindings and libraries
• A launcher application
• Java application .jar file(s) (WorkerApplication.jar)

A typical execution does the following steps:

1. The launcher is executed, but it does not contact the client. From the point of view
of the BOINC client it’s an invisible application, it does not use any BOINC API
or DC-API functions.

2. If the runtime is to be deployed with the application, then the launcher checks if
it is already there (the application might be resuming from a checkpoint). If not
found, then it has to be either installed, or uncompressed in the working directory.

3. The launcher starts the Java application using the Java runtime. After that the
launcher will wait for it’s termination. This step is necessary because the BOINC
client determines the outcome of the task based on the exit status of the applica-
tion, in this case on the exit status of the launcher.

4. The Java application behaves like a normal DC-API client application, it has
access to the full set of DC-API client functions via the interface provided with
JNI. Typically the following steps are executed:

Enabling Java applications for BOINC with DC-API 9

Fig. 2 A DC-API Java application on BOINC

a. The application initializes the DC-API client library via the DCClient.i-
nit method.

b. Resolves the location of it’s input and output files by calling the DCClient.
resolveFileName method.

c. During computation it calls periodically the DCClient.checkEventmet-
hod and processes the received events. One of the events is Event.is-
CheckpointRequest, upon this event the application should checkpoint
itself.

d. Whenever possible, the application should call the DCClient.fraction-
Done method with the percentage of the work completed. This will report the
BOINC client, thus the user, the completion ratio of the current task.

e. The DCClient.finish method should be called at the end of the compu-
tation with zero value (or anytime if error occurs with non-zero value). This
will finish the execution.

5. After the application has finished, the launcher picks up it’s exit status and exits
with the same value. The output files are sent back to the master, and it is also
notified about the completion of the task.

Beside BOINC, the DC-API backend also supports Condor, the Grid Under-
ground middleware and a simple fork-based implementation, thus the DC-API -
Java interface is available on any of these platforms. Currently only DC-API client
side functions are available via this Java interface, there is no support for using them
on the master side yet. There is no restriction to use the same programming language
both on client and master side, master applications should use the C/ C++ DC-API
now.

10 Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton and Péter Kacsuk

4.1 Sample appication and performance

Since Java is a new platform for BOINC unfortunately we don’t have any real world
application ported for performance evaluation yet. That’s why we chose to use im-
plement a rather simple application on our own which searches for the first given
number of prime numbers. It is a deterministic and CPU intensive application, thus
fits perfectly our needs. We chose to search for the first 100000 prime numbers (from
2 to 1299709) since this has a moderate, but similar run-time as a normal BOINC
work unit (around 1 hour) on a nowadays PC. We created two versions of the appli-
cation, one which uses DC-API (and BOINC) and a standalone version stripped of
any DC-API dependencies.

DCClient cli = new DCClient () ;
long x=2 , c=0;
Event e ;
cli .init () ;
readCheckpoint () ;
while (true) {

if (c == count)
break ;

c = isPrime (x) ;
if (x % 1000 == 0) {

e = cli .checkEvent () ;
if (e == Event .isCheckpointRequest)

doCheckpoint (x , c) ;
}
x++;

}
cli .finish (0) ;

Fig. 3 Structure of the DC-API enabled Java application

The DC-API enabled one (see Figure 3) initializes the DC-API library, reads
the checkpoint file if any exists and continues the work. It checks periodically for
any event and checkpoints itself on Event.isCheckpointRequest. When
finished it calls DCClient.finish(0) which will terminate the application.

The standalone version reads the checkpoint file, does periodic work, check-
points during the work and quits when finished. Since there is no event to signal
the checkpoint request, we used the default interval of BOINC, which is 300 sec-
onds, for checkpointing period. The invoked checkpoint function is only chekpoints
when at least 300 seconds passed since the last invocation.

We deployed these applications on an Intel Pentium 4 2.53GHz / 1GB RAM /
Debian Linux 4.0 32bit node. We pre-installed the Java runtime (SE 6 update 6),

Enabling Java applications for BOINC with DC-API 11

thus the measurements made do not consider the overhead of downloading it with
the application and uncompressing it later at the start of each run. We chose not to
directly measure the overhead of the JNI calls, since they just act as forwarders to
the DC-API library, rather to compare the overhead of the whole infrastructure (JNI
+ DC-API + BOINC) against the standalone version.

Type Slowest run Fastest run Average time
JNI + DC-API + BOINC 4409.86 sec 4407.99 sec 4408.82 sec

Standalone 4371.76 sec 4369.60 sec 4370.71 sec

Fig. 4 Run-time (real, in seconds) of the sample DC-API enabled and standalone application

We ran each application 15 times, the standalone one was executed from shell,
and the DC-API enabled one via BOINC. Measurements (see Figure 4) were made
using the Linux time command, the DC-API enabled application was wrapped in a
shell script (acting as the launcher application) which invoked the time command
with the application.

We can see that the JNI + DC-API + BOINC infrastructure has only minimal
(∼ 1%) overhead compared to the standalone run.

5 Conclusion

There are existing grid APIs which could be partially implemented on desktop grid
systems if the goal was to support applications that are primarily running on tradi-
tional grid systems but sometimes also has to support desktop grids. Many features
of traditional grid systems are not supported on desktop grids therefore, any appli-
cation that relies on them would not run on a desktop grid. On the other hand numer-
ous desktop-grid specific functionality are missing from these grid APIs therefore,
a full-blown desktop grid application would still need to use desktop grid specific
APIs.

In this paper we presented DC-API, a simple uniform API for (desktop) grids.
We’ve shown how it enables to run native Java applications on the BOINC platform,
which directly does not support them. Future work will be lifting the limitation of
the client side only Java support, and finding a solution for a better JRE deployment
method consistent with the Java license.

The DC-API + Java package is currently available [2] upon request for Microsoft
Windows and Linux platforms.

Acknowledgements The research and development published in this paper is supported by the
European Commission under contract number IST-2002-004265 (FP6 NoE, CoreGRID).

12 Attila Csaba Marosi, Gábor Gombás, Zoltán Balaton and Péter Kacsuk

References

1. Java Native Interface. http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
2. Sztaki desktop grid http://www.desktopgrid.hu
3. Allen, G., Davis, K., Dolkas, K., Doulamis, N., Goodale, T., Kielmann, T., Merzky, A.,

Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, E., Shalf, J., Taylor, I.: Enabling
applications on the grid – a GridLab overview. International Journal on High Performance
Computing Applications 17(4), 449–466 (2003)

4. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van
Nieuwpoort, R., Reinefeld, A., Schintke, F., Schütt, T., Seidel, E., Ullmer, B.: The Grid Ap-
plication Toolkit: Towards generic and easy application programming interfaces for the grid.
Proceedings of the IEEE 93(3), 534–550 (2005)

5. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: R. Buyya
(ed.) Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

6. Hungarian ClusterGrid Infrastructure Project. http://www.clustergrid.niif.hu/
7. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G., Lee, C., Merzky,

A., Rajic, H., Shalf, J.: SAGA: A simple API for grid applications - high-level application
programming on the grid. Computational Methods in Science and Technology 12(1), 7–20
(2005). Special issue ”Grid Applications: New Challenges for Computational Methods”

8. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., Merzky, A., Shalf, J., Smith, C.: A
simple API for grid applications (SAGA). Draft GWD-R.90, Open Grid Forum (2007)

9. Kacsuk, P., Podhorszki, N., Kiss, T.: Scalable desktop grid system. High Performance Com-
puting for Computational Science - VECPAR 2006 pp. 27–38 (2007)

10. The Open Grid Forum. http://www.ogf.org
11. Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J., Haas, A., Nitzberg, B., Rajic, H.,

Tollefsrud, J.: Distributed resource management application api specification 1.0. Proposed
Recommendation GFD-R.022, Global Grid Forum (2004)

Bridging the Data Management Gap Between
Service and Desktop Grids

Ian Kelley and Ian Taylor

Abstract Volunteer computing platforms have become a popular means of pro-
viding vast amounts of processing power to scientific applications through the use
of personal home computers. To date, with little exception, these systems have fo-
cused solely on exploiting idle CPU cycles and have yet to take full advantage of
other available resources such as powerful video card processors, hard disk stor-
age capacities, and high-speed network connections. As part of the EDGeS project,
we are working to expand this narrow scope to also utilize available network and
storage capabilities. In this paper we outline the justifications for this approach and
introduce how decentralized P2P networks are being built in the project to distribute
scientific data currently on the Grid.

1 Introduction

For a number of years, volunteer computing environments have been extremely suc-
cessful in leveraging the idle resources of personal computers. This has primarily
been orchestrated through a donation system whereby private individuals allow their
otherwise idle computers to be used by a third-party application for processing data.
To date, major volunteer computing systems, such as the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [1][2], have focused solely on harnessing
available CPU processing power, and have yet to take full advantage of the other
available resource capabilities. With the sharp increases in consumer networking
speeds and storage capacities over the past few years, utilizing idle network band-
width to distribute data has become both a possible and attractive opportunity for
volunteer computing.

Ian Kelley and Ian Taylor
School of Computer Science, Cardiff University, Cardiff, United Kingdom
e-mail: {I.R.Kelley,Ian.J.Taylor}@cs.cardiff.ac.uk

14 Ian Kelley and Ian Taylor

Enabling Desktop Grids for e-Science (EDGeS) [3][4] is an EU FP7 project that
is setting up infrastructure and building software to enable the integration of Service
Grids, or traditional Grid environments [5] generally composed of clusters and su-
percomputers, and Desktop Grid [1][6] systems, such as the popular volunteer com-
puting project BOINC. When moving jobs between these two environments, and
specifically when transferring a job from a Service Grid to a Desktop Grid, there is
a need for some form of data management scheme to serve the files to participating
Desktop Grid worker nodes.

One way to offload the central network needs that are created in this process
and limit exposure to foreign hosts is to use a brokered data distribution mecha-
nism. These brokers would act as a buffer between the two systems, receiving data
from local hosts and managing the wider distribution challenges. Using peer-to-peer
(P2P) techniques to implement such a system could be seen as a viable alternative to
centralized data distribution. Not only would this reduce the Service Grid resources
needed to integrate with a Desktop Grid, it could also mitigate the potential risk in-
volved in transferring jobs to the Desktop Grid. By providing an intermediary layer,
one is able to limit the number of peers to which a Service Grid node must dis-
tribute data. This can be further refined by applying project-based security criteria
to govern the membership composition of the data brokers. For the Desktop Grid
network, a P2P data distribution system would also allow current projects to take
full advantage of client-side network and storage capabilities, enabling the explo-
ration of new types of data-intensive application scenarios, ones that are currently
overly prohibitive given their large data transfer needs.

There are many ways the aforementioned functionality could be implemented,
ranging from BitTorrent-style networks [7][8], where there is a central tracker and
all participants share relatively equal loads, to more customizable networks that al-
low for clients and service providers to be grouped. Custom-built solutions would
have the advantage of facilitating different network topologies and data distribu-
tion algorithms. This allows for tailoring the network for the needs of an individual
application, albeit with the disadvantage of increased development effort and code
maintenance. In the case of BOINC, each of these approaches has its own distinct
advantages and disadvantages, as explored in [9], especially when one takes into
consideration the target user-community and their needs. Through the course of
the paper we will show the data distribution work being undertaken in the EDGeS
project as it advances towards interoperability between Service Grids and Desktop
Grids. In particular, we will explore some of the requirements and varying scenarios
that can appear in typical BOINC projects, outline the relative benefits of applying
these new techniques, and give an overview of the data distribution software we are
building for EDGeS.

The paper is organized as follows: section 2 gives background on the tools and
related technologies involved; section 3 discusses EDGeS’ data needs; section 4
gives an introduction of BOINC-specific requirements; section 5 overviews select
design issues when applying P2P technologies to volunteer computing; section 6
proposes our decentralized data center approach; and section 7 concludes.

Bridging the Data Management Gap Between Service and Desktop Grids 15

2 Background and related work

BOINC is currently the most widespread and successful volunteer computing Desk-
top Grid application ever, with over 50 distinct projects1 and almost three million
total computers from over 200 countries registered to date2. For data distribution,
BOINC projects generally use a single centralized server or a set of mirrors. This
centralized architecture, although very effective, incurs additional costs and can be
a potential bottleneck when tasks share input files or the central server has limited
bandwidth. Increasing the number of mirrors to accommodate increased loads puts
extra administrative burden on the project organiser and can prove very time con-
suming to manage.

Popular and proven P2P technologies [10][11][12] such as BitTorrent, or com-
mercial solutions like Amazon’s S33 or Google’s GFS [13], could be fairly effec-
tively applied to provide for the data needs of BOINC, at least as they relate strictly
to distribution. However, in the case of commercial products, there is a direct mon-
etary cost involved, and for P2P systems like BitTorrent, the facility to secure or
limit who is able to receive, cache, or propagate different pieces of information is
generally limited or nonexistent. For example, BitTorrent, like many other P2P sys-
tems, has focused on ensuring conventional file-sharing features, such as efficient
transfers, equal sharing and file integrity.

Desktop Grid environments have different requirements to general file-sharing
P2P communities because security can become more of a complex issue than solely
guaranteeing data validity (see section 5.1). In Desktop Grids, it can be a requisite
that only certain amounts of data are shared with an individual peer. Communities
can also be reluctant to introduce a system that would have peers directly sharing
with one another, as it might have the potential (or perceived potential) to have
security implications for clients as ports are opened for outside connectivity. It is
therefore important not only for data integrity and reliability to be ensured, but also
to have available safeguards that can limit peer nodes’ exposure to malicious attacks.
It is these types of requirements that has prompted our work to create a custom P2P
network for data distribution that provides both client and server safeguards and
stricter controls for project administrators as to what network participants receive
and distribute data.

3 EDGeS’ data needs

In the EDGeS project a job can be transferred from a Service Grid to a Desktop
Grid. When this occurs, there is a need for some mechanism that either moves the

1 There are over 50 known BOINC projects. At the time of this writing, the BOINC website has a
list of 25 in which they have been in direct contact with: http://boinc.berkeley.edu/projects.php
2 http://boincstats.com
3 http://aws.amazon.com/s3

16 Ian Kelley and Ian Taylor

job’s input files directly to the Desktop Grid workers, or exposes them on the Service
Grid host for Desktop Grid peers to directly access and download.

At first glance, perhaps the easiest solution to enable access to the needed files
would be to simply expose the data directly from the Service Grid file system. Such
an approach would closely mimic the current functionality found in most Desktop
Grid projects, where data is distributed to all participants from a central machine
or through a set of known and static mirrors. This solution, although seemingly
attractive in its simplicity, has many limiting drawbacks. For example, the Service
Grid machine where the data is hosted might not be able to effectively serve the
numerous peers making requests due to bandwidth limitations. Where previously
the data was likely to be stored locally, allowing many processors access to it on
a shared file system, now each peer which wishes to perform work must download
an individual copy of the data to be analyzed. This can very quickly lead to a large
drain on network bandwidth, especially in the case of larger files that need to be
distributed to multiple workers.

In addition to raw resource usage concerns, there might also be security infras-
tructure and policies that would prevent access to local files from foreign and un-
trusted hosts. Anonymous access is generally not an issue for most BOINC projects,
as they are able to have dedicated and network isolated data servers. This could,
however, quickly become problematic, both technically and politically, if one tried
to somehow bootstrap a BOINC data server onto a cluster or supercomputer to en-
able access to users’ files. The situation is further complicated by the often complex
software dependencies in existing Grid systems that make deploying yet another
Grid service either not possible or at the very least unwelcome.

EDGeS requires a system that can adapt to varying input file sizes and replication
factors without unduly stressing or exposing the Service Grid layer. This require-
ment will become increasing relevant as the EDGeS project moves beyond its test
servers, which we can manage and configure, and begins connecting a wide range
of EGEE [14] resources to different Desktop Grid systems. In this scenario, each of
these federated Service Grid nodes will have different security infrastructures, in-
ternal policies, and network connectivity traits that would essentially render useless
any system that required them to install additional software or adapt security policy.
By pushing data to a P2P environment and offloading data distribution, Service Grid
nodes could transfer the data distribution responsibilities, making the integration of
Service and Desktop Grids more accessible.

4 BOINC requirements

As briefly mentioned in section 2, there are several dozen BOINC projects in opera-
tion. Every one of these projects shares a common thread with one another; each has
a highly parallel problem able to be split into thousands of independent tasks that
can be asynchronously processed. It is these properties that allow BOINC projects
to exploit a Desktop Grid environment and utilize the numerous volunteer comput-

Bridging the Data Management Gap Between Service and Desktop Grids 17

ing resources that are made available in the process. What isn’t apparent, however,
is that each of these projects can have vastly different levels of data intensity. This
can manifest itself in the form of varying data input and output file sizes, changing
replication facts, and different throughput requirements.

Given the dissimilar requirements for BOINC projects, there are many consider-
ations one must take when thinking of applying a P2P system to the BOINC mid-
dleware. Even if a list of all the possible data distribution-related aspects were com-
plied, various communities and application groups would have different priority
rankings as to which are the most important for their individual circumstances (e.g.,
security vs. usability). The list we present here does not delve into the details of dif-
ferent project’s data requirements, rather, it represents a few of the cross-cutting is-
sues that are generally present in any BOINC-based project. Additional example ar-
eas to explore, which are not covered here, include topics such as data access speed,
encryption, support for large data sets, and fuzzy query matching when searching
for data. However, for the interests of simplicity and because the previously men-
tioned areas are currently being investigated, we have limited the scope explored
here to the four issues listed below, which we believe to be key areas one must ad-
dress when considering a P2P system that will be useful to the BOINC community
as a whole.

Firewall and Router Configuration — Depending on an individual project’s con-
figuration, firewall and router issues could be problematic, with a general tradeoff
between “punching holes” in clients’ firewalls to be able to exploit their bandwidth
and the security concerns and extra software development or configuration this de-
mands. In volunteer computing projects it is especially important to provide a high
level of security to participants. If NATs are bypassed, they need to be done in a
secure and transparent (to the end-user) manner.

Malicious Users — The issue of which nodes are able to propagate data on the net-
work, and therefore which ones will have the ability to inflict damage, will largely
depend upon the individual policies of each hosting project. In the most restric-
tive case, only trusted and verified participants would be certified to propagate data.
In looser security configurations, which allow for the exploitation of a larger pool
of resources, security would have to be more flexible. Regardless of the decision,
data signing can help to prevent any analysis of corrupted data. This makes net-
work flooding the major concern, however, this can be limited relatively easily by
implementing a ranking system to report misbehaving data providers.

Exploiting Network Topology — The ability to exploit network topology such as
LANs and WAN proximity is a useful way to further limit the amount of necessary
bandwidth to serve project files. The trade-off is generally that the looser the system
becomes in its ability to adopt and utilize network proximity (such as providing
caching nodes on LANs) the more exposed the network is to abuse and potential
misconfiguration.

Integration with BOINC — It is important for any software that wishes to pro-
vide an added value to the larger BOINC community to have little or no impact on

18 Ian Kelley and Ian Taylor

current operating procedures. Requiring external libraries or other similar depen-
dencies could prove to be problematic and limit widespread uptake. The BOINC
client is currently written in C++ and any successful add-on would most likely have
to adapt to this requirement.

A more in-depth discussion of the above concerns and how they relate to the data
distribution software being designed in EDGeS, along with a comparison to BitTor-
rent is discussed in [9].

5 Design considerations

Beyond the issues above, there are a number of general factors that become impor-
tant when designing and deploying a data serving network across large-scale volun-
teer networks such as those in the BOINC community. For example, the size of the
network can vary dramatically between the extremely popular BOINC projects and
their less successful counterparts. Aside from sheer network size, different projects
will have varying data input and output file sizes, with some projects having a
peer transfer over a gigabyte per month while others require only a fraction of this
amount. For each project within BOINC, these factors are slightly different, and the
optimal network setup for one project might not be very efficient for another. These
differences make designing an optimal network for BOINC as a whole a challenging
task. Yet as shown in [15], the application of a P2P network layer would allow many
additional and unused network and storage resources to be leveraged by BOINC
projects without sacrificing necessary processing power.

In section 6, we introduce the data distribution software we are in the beginning
phases of developing. However, before talking of the implementation and design
specifics, it is useful to further expand upon the requirements listed in section 4 and
discuss some of the cross-cutting security issues shared between BOINC projects.
This will help to set the stage for the proposed architecture.

5.1 Security aspects

When building a P2P network for volunteer computing, there are a number of se-
curity requirements beyond the traditional notion of simply ensuring file integrity.
Due to the volatile and insecure nature of BOINC networks, a product of their open
participation policies, there can be reason to enforce limitations on which entities
are allowed to distribute and cache data. When opening the data distribution chan-
nels to public participation, security can become a concern. In this context, the area
of security can be roughly split into the following two distinct realms: user security
and data security.

Bridging the Data Management Gap Between Service and Desktop Grids 19

User security refers to the ability to protect the “volunteers” in the network from
any harm that could possibility be inflicted on their machine by another network
participant. This is a very important issue when one is within the realm of volun-
teer computing, as the resources are typically donated home computers that likely
contain volunteers’ important personal information and documents. In the case of
a security breech in which these volunteer resources were compromised by some
malicious entity, the potentially fallout could be enormous. Fear of a harsh backlash
has been one of the limiting factors to the incorporation of standard P2P technolo-
gies into the BOINC middleware. Even in the event where no actual security breech
takes place, requiring peers to share data with one another via P2P protocols, such
as BitTorrent, which enforces sharing, could have the down-side of alienating po-
tential volunteers. This could result from any number of factors, ranging from a
volunteer’s unwillingness to donate network resources (perhaps due to bandwidth
requirements from other computers on the same network or a metered data connec-
tion) to misconceived public perception that associates peer-to-peer technological
implementations with some of the more controversial uses of the technology.

It is necessary to be cognizant of the fact that the BOINC community relies upon
volunteers to function, and any “peer-to-peer” data distribution scheme that is imple-
mented must allow for users to opt-out if they do not wish to share their bandwidth
or storage capacity. Even in the instance where users have opted to share data, a gen-
erally high level of consideration has to be given to ensure that their computers are
adequately protected from attacks. In current BOINC environments this is solved
by having a centralized, and presumably non-hostile, authority that distributes both
executables and data. Although even in this scenario, there are still chances that
the servers could be compromised, or that the executables distributed have inherent
security flaws, this is generally a very minimal risk and would be a consequence
of actions of the application stakeholders, not third-party unknown distributers. It
is these considerations and requirements that make applying P2P protocols such as
BitTorrent, which enforce tit-for-tat sharing, problematic.

Data security can be a complex matter. First, there is the issue of file integrity,
which we will not go into in detail here, mainly because there are many well-known
and suitable techniques to validate the authenticity of files, such as hashing and sign-
ing. More interesting and novel is investigating security schemes for which to select
and distribute data-sets to peers. When looking at this issue in more detail, it can
further be broken down into two broad subject areas: authentication and authoriza-
tion.

Authentication is the verification process by which an entity identifies itself to oth-
ers and gives evidence to its validity. Public key infrastructure (PKI) [16] is a proven
tool that can be fairly effectively applied for performing peer identity authentication.
In the simplest case, this can be done by having a central authority (i.e., the BOINC
manager) sign and issue either full or proxy certificates to those it deems trustworthy
enough to distribute data on its behalf. When another peer on the network contacts
this “trusted” entity, it can use the public key from the centralized BOINC manager
to verify the authenticity of the trusted peer. This process can likewise be performed

20 Ian Kelley and Ian Taylor

in reverse, provided clients are also issued certificates, as a means for the data dis-
tributers to validate the identity of the clients and verify they have the proper creden-
tials to retrieve data. The process of using certificates for mutual authentication can
be a fairly effective solution that would provide individual peers with certainty that
the host they are retrieving data from has been delegated the proper authority and
visa versa. More interesting use-cases that provide for interaction between multiple
virtual organizations (VOs) and hierarchal delegation (e.g., certificate-chaining and
cross-certification agreements) can be derived from this simple arrangement, but are
beyond the scope of this paper [17][18].

Authorization is a much more interesting question than authorization. This is pri-
marily because there are standardized techniques for authentication that can be
widely applied to many different applications with little or no modification. Au-
thorization conversely is application-specific, differing with each individual appli-
cation’s unique needs and authority structures. Although there are tools to help de-
fine authorization policies and enforce them [19], the policies themselves will be
different with each application.

At the most basic level of authorizing select peers to cache and distribute data as
they see fit, authorization is very simple and should not prove problematic. For ex-
ample, it is possible to issue special certificates to the data cachers (as mentioned in
the authentication section) that allows them to validate as data distributors. However,
when more dynamic and customizable queries are needed, such as finer-grained
control over what data can be propagated by individual data cachers, the issue of
authorization becomes more complex. When this occurs, the issue requires more
due diligence, and any scheme that goes beyond a simple yes/no query must be cus-
tomized specifically to the target environment, in this case, not only BOINC, but
potentially each target community.

6 Proposed architecture: ADICS

The peer-to-peer Architecture for Data-Intensive Cycle Sharing (ADICS) [20] is
an effort to build a P2P software layer that can be used by scientific applications,
specifically those engaged in volunteer computing, to distribute, manage, and main-
tain their data. Therefore, the core infrastructure of ADICS is being built with the
needs of a scientific user and application in mind. As a software development pack-
age being supported by the EDGeS project, ADICS is taking very close consider-
ation of the issues raised in section 3. It should be noted, however, that the core
infrastructure is being architected to be fairly application agnostic and should there-
fore be applicable to other applications that want to distribute data in a peer-to-peer
environment.

Based upon the previously mentioned security and user requirements, the net-
work we have chosen to implement at this time is an architecture that has three
distinct entities: workers, data centers, and data providers. In this 3-tiered, bridged

Bridging the Data Management Gap Between Service and Desktop Grids 21

architecture, the data provider pushes files to the data center overlay network, which
self-organizes using P2P techniques to propagate data amongst itself. This data cen-
ter layer then serves pull requests for data from the workers. Figure 1 gives a gen-
eralized overview of how the different components in ADICS relate to one another
after the initial discovery phase. During discovery, a worker node would send a
request to known access points in the data center overlay network and retrieve an
updated list of connection points from which it can harvest data. If this process fails,
likely due to a stale list of hosts, the worker node is able to contact the static data
provider to request a new data center reference. Subsequent requests for data are

Fig. 1 ADICS schematic of the organization of the dis-
tributed entities that shows a data provider serving data
to the caching layer, which is, in turn, distributed to the
worker nodes.

made to the data center layer, and
the worker is then able to contact
one or more centers for download-
ing.

The reasoning behind this is
to allow for only a subset of
peers that match certain perfor-
mance and security thresholds to
share data with the rest of the net-
work. By implementing an opt-
in and (for the moment centrally)
validated system for data sharing,
many of the security considera-
tions (see sections 4 and 5) such as
router configuration, automatically
opening ports, and rouge hosts
providing data can be marginal-
ized. In this scenario, the data cen-

ter subset of peers on the network act as “true peers” in the sense that that both send
and receive on an equal standing with their data center neighbors, however, they
act solely as servers to the workers. One benefit of this approach is that, workers
continue to operate relatively unchanged from their previous BOINC working con-
ditions, with the relatively minor addition of a distributed data lookup.

Secure data centers are the name we have given members of the super-peer over-
lay that are engaged in data sharing. The secure aspects becomes apparent when
constraints are later put upon the registration phase, thereby restricting the set of
peers that are allowed to propagate data. Policy decisions as to which participants,
if any, are allowed to host and redistribute data would be made by each individual
BOINC project, with ADICS providing the base infrastructure to aide the process as
well as a default implementation. Once the general tools are in place, more complex
scenarios can be explored that go beyond simply restricting data center member-
ship. For example, constraints could be introduced to govern the relative sensitivity
of data and retention policies. Adding these new types of functionality would al-
low for more advanced use-cases, albeit with the additional costs of software and
network complexity.

22 Ian Kelley and Ian Taylor

Based upon the preliminary results of [21] and the arguments presented here, it
is our belief that decentralized data centers can prove to be both valid and useful
solutions to distributing data in Desktop Grid environments. There is, however, a
tradeoff between functionality and complexity that needs to be adequately addressed
and balanced if such technologies are to be adopted by production environments
such as BOINC.

6.1 Prototype development

Initial development in ADICS was based upon the Peer-to-Peer Simplified (P2PS)
middleware [22], a generic P2P infrastructure and JXTA [23]. Although both P2PS
and JXTA provide generic tools for building super-peer networks, they proved to
be limiting either in their ability to scale or to form role-based groups where the
developer can explicitly form the topology and control message relaying without
major modifications. Specifically, P2PS and JXTA have been abandoned because of
two main reasons. First, neither allow the fine-grained access controls needed for
the data layer. Second, there are no caching policies in either system for data rather
than metadata (adverts or queries). Therefore, the data layer would essentially have
to be built from scratch, meaning that the benefits of either system are reduced to
providing their respective P2P abstractions. It was therefore decided that the bene-
fits of using these systems were far outweighed by the drawbacks of the additional
dependencies they placed upon the end-user, and their increased complexity.

The current focus is on implementing a specific system that fits into the current
BOINC messaging layer, yet is generic enough to be applied in a number of dif-
ferent ways. To this end, we are developing a prototype that will help to define the
entities and evolve the design of the network and its messages. This will allow us
to validate the selected topology and show that it is useful to solve the security and
data propagation issues introduced earlier in this paper.

Figure 2 gives a general overview of the different network interactions that a
worker has in the current prototype. In order to enable the prototype to function in-
dependently of BOINC and speed development, we have implemented a very basic
work generation entity (the Network Manager) that generates work units to fulfill
client requests and begin the data retrieval cycle. It should be noted that in the pro-
totype available at the time of this writing, the data center layer is fed by the central
repository, and does not self-propigate data amongst itself.

• (1) A worker requests a WorkUnit from a known Network Manager server.
(1b) The worker receives the response and extracts a list of DataQueries, which
contain information on how to identify the job’s data dependencies. Currently
this is a unique ID, however, it could also be a more sophisticated query.

• (2) The worker contacts a Data Lookup Service, and provides it with one or more
DataQueries. Currently this service is known and centralized, however, there are
plans to decentralize it and provide it as a service on the Data Center layer.
(2b) The Data Lookup Service attempts to match each DataQuery to a real file

Bridging the Data Management Gap Between Service and Desktop Grids 23

mapping and, if successful, returns a DataPointer for each DataQuery. The Dat-
aPointer contains a list of Data Centers that are believed to have he file, as well
as any associated metadata about the file that is available.

• (3) For each DataPointer, the worker extracts the location of one or more Data
Centers that are believed to host the file. The worker then directly connects to
one or more (currently one) Data Center for retrieval.
(3b) The Data Center retrieves the file from its local disk space and sends it to
the worker.

In its current implementation, the prototype is very similar in nature to how
early Napster worked, with a central metadata server keeping track of where

Fig. 2 Diagram showing the basic flow of messages
from the worker to the various other network entities.

data is located. The Data Lookup
Service is also reminiscent of a
BitTorrent tracker, which performs
essentially the same functions on
behalf of a single file.

One of the main differences
between these previous systems
and the described here data cen-
ter scheme is the potential for the
addition of security criteria which
restricts the data service layer to
a subset of the available peers.
The next step in ADICS develop-
ment is to decentralize the data
lookup facility through implement
self-organizing traits on the data
center layer, and to add security
constraints on the propagation and
lookup of data. At the time of this
writing, this is currently a work-in-
progress.

One of the clear issues raised in
section 4 was that of integration with the existing BOINC software stack. ADICS is
currently being designed and built in Java, which naturally creates a client depen-
dency on a JRE. As mentioned in section 4, this can pose a problem when trying to
later integrate ADICS into the BOINC client layer. Two possible solutions to this
problem are: (1) add a JRE to the required software to run BOINC, which could
severely limit adoption of ADICS; and, (2) create a C++ implementation of ADICS
for workers that provides download capabilities. This would allow for the core dis-
covery and data propagation layer to be left in Java. By doing so, we would limit
the JRE requirement to nodes that wish to operate as data centers. Current design
and plans for ADICS are pursuing option 1, in order to build a working system as
quickly as possible. The necessity of option 2 will be reassessed later based upon
feedback from the BOINC user-community.

24 Ian Kelley and Ian Taylor

It should be noted that the software discussed here is currently under heavy de-
velopment and is expected to evolve as new challenges are encountered. As part of
the EDGeS project deliverables, the first public prototype of ADICS will be released
in December 2008. This prototype will have functionality that allows for the propa-
gation, caching, and sharing of data, using the decentralized data center architecture
outlined here.

6.2 Research theories verified through simulation

Much work in the few months since EDGeS started has focused on using simula-
tion tools, such as NS-2 [24] and [21]. The goal of this work is to verify the ideas
presented here and define the general structure of a network that supports EDGeS’
needs and attempts to model the transfer of typical sized data files and network
loads for current BOINC projects, such as Einstein@HOME. This is currently be-
ing achieved through the construction of reusable network topologies that represent
standard home Internet connections in systems like NS-2. We are applying these
topologies to the ADICS prototype code though the third-party AgentJ libaries [25]
that allows for the attachment of Java entities to NS-2. Currently we are using this
to represent the behaviour of the central data repository (i.e., the BOINC server),
the data caching layer, and the connected peers, while taking into consideration pa-
rameters such as the network links and the underlying protocols.

Previous simulation work [21] was also successfully undertaken to explore a
more general cycle-sharing paradigm and the suitability of a data center approach
for caching job input files in distributed environments such as BOINC. Although
the work presented in that paper was more generalized, the fundamental “dynamic
caching” and data distribution aspects are consistent with the ones presented here.
These prior simulations were very useful in helping to shape the general discus-
sion and move towards the more specific network simulations that are taking place
now. We are continuing to refine those simulations to mimic real-life use-cases, in
addition to the NS-2 models previously mentioned.

7 Conclusion

In this paper we have discussed some of the data issues that arise in the EDGeS
project as Service Grid jobs are migrated to a Desktop Grid environment. One low-
cost way to provide the needed bandwidth and data storage to support this scenario
is to exploit client-side network capacities in a P2P-type system for distributed data
sharing and propagation. The brokered approach outlined here, ADICS, can pro-
vide a happy medium between a “true” P2P system implementation that treats par-
ticipants relatively equally and the current static mirroring being used by BOINC
projects. ADICS has three main entities: data providers that push data onto the net-

Bridging the Data Management Gap Between Service and Desktop Grids 25

work; data centers (or cachers) that conform to some security requirement that al-
lows them to propagate data on the data providers’ behalf; and, data consumers (or
workers) that execute jobs and request input files from the data center layer. The
architecture outlined here is currently being pursued within the EDGeS project. It is
hoped this paper will further the discussion on the applicability of P2P technologies
in the scientific community and encourage others to explore it as a valid and useful
approach for data distribution.

Acknowledgements This work was supported by the CoreGRID Network of Excellence, the Cen-
ter for Computation & Technology at Louisiana State University, EPSRC grant EP/C006291/1, and
the EU FP7 EDGeS grant RI 211727.

References

1. “BOINC - Berkeley Open Infrastructure for Network Computing.” [Online]. Available:
http://boinc.berkeley.edu/

2. D. P. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” in 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, November 2004,
pp. 365–372.

3. “Enabling Desktop Grids for e-Science.” [Online]. Available: http://www.edges-grid.eu
4. Z. Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C. Marosi, A. Emmen, G. Ter-

styanszky, T. Kiss, I. Kelley, I. Taylor, O. Lodygensky, M. Cardenas-Montes, G. Fedak, and
F. Araujo, “EDGeS: The Common Boundary Between Service and Desktop Grids,” in To be
published in a special volume of the CoreGRID Springer series., 2008.

5. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Int. Journal
of Supercomputing Applications, vol. 11, no. 2, pp. 115–128, 1997.

6. F. Cappello et al., “Computing on Large-Scale Distributed Systems: XtremWeb Architecture,
Programming Models, Security, Tests and Convergence with Grid,” Future Generation Com-
puter Systems , vol. 21, no. 3, pp. 417–437, 2005.

7. B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Economics of Peer-
to-Peer Systems (P2PEcon’03), Berkeley, CA, June 2003.

8. “Bittorrent.” [Online]. Available: http://www.bittorrent.com/
9. F. Costa, I. Kelley, L. Silva, and I. Taylor, “Peer-To-Peer Techniques for Data Distribution in

Desktop Grid Computing Platforms,” in To be published in a special volume of the CoreGRID
Springer series., 2008.

10. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: an architecture for global-
scale persistent storage,” SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

11. S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi, and S. L. Scott,
“FreeLoader: Scavenging Desktop Storage Resources for Scientific Data,” in SC ’05: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 56.

12. I. Clarke, S. G. Miller, O. Sandberg, B. Wiley, and T. W. Hong, “Protecting Free Expression
Online with Freenet,” IEEE Internet Computing, pp. 40–49, January, February 2002.

13. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 29–43, 2003.

14. “EGEE: Enabling Grids for E-science in Europe.” [Online]. Available: http://public.eu-
egee.org

26 Ian Kelley and Ian Taylor

15. D. P. Anderson and G. Fedak, “The computational and storage potential of volunteer com-
puting,” in CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid. Washington, DC, USA: IEEE Computer Society, 2006, pp. 73–80.

16. “IETF Public Key Infrastructure Working Group.” [Online]. Available:
http://www.ietf.org/html.charters/pkix-charter.html

17. K. Berket, A. Essiari, and A. Muratas, “PKI-based security for peer-to-peer information shar-
ing,” Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth International Confer-
ence on, pp. 45–52, 25-27 Aug. 2004.

18. J. E. Altman, “PKI Security for JXTA Overlay Networks,” IAM Consulting, Inc., Tech. Rep.,
2003.

19. T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakrishnan,
B. Baker, M. Goode, and K. Keahey, “Identity Federation and Attribute-based Authorization
through the Globus Toolkit, Shibboleth, GridShib, and MyProxy,” in NIST PKI Workshop,
April 2006.

20. “Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (ADICS).” [Online]. Available:
http://www.p2p-adics.org

21. P. Cozza, I. Kelley, C. Mastroianni, D. Talia, and I. Taylor, “Cache-enabled super-peer over-
lays for multiple job submission on grids,” in Grid Middleware and Services: Challenges and
Solutions, D. Talia, R. Yahyapour, and W. Ziegler, Eds. Springer, 2008, to appear.

22. I. Wang, “P2PS (Peer-to-Peer Simplified),” in Proceedings of 13th Annual Mardi Gras Confer-
ence - Frontiers of Grid Applications and Technologies. Louisiana State University, February
2005, pp. 54–59.

23. “Project JXTA.” [Online]. Available: http://www.jxta.org/
24. “The Ns2 Simulator.” [Online]. Available: http://www.isi.edu/nsnam/ns/
25. I. Taylor, I. Downard, B. Adamson, and J. Macker, “AgentJ: Enabling Java NS-2 Simulations

for Large Scale Distributed Multimedia Applications,” in Second International Conference on
Distributed Frameworks for Multimedia DFMA 2006, Penang, Malaysia, 14th to 17th May
2006.

Utilizing the EGEE Infrastructure for Desktop
Grids∗

Zoltán Farkas, Péter Kacsuk and Manuel Rubio del Solar

Abstract Today basically two grid concepts rule the world: service grids and desk-
top grids. Service grids offer an infrastructure for grid users, thus require notable
management to keep the service running. On the other hand, desktop grids aim to
utilize free CPU cycles of cheap desktop PCs, are easy to set up, but the availability
towards users is limited compared to the service grid. The aim of the EDGeS project
is to create an integrated infrastructure that gathers the advantages of the two grid
concepts. A building block of this infrastructure is bridging between the different
grid types. In the paper we focus on bridging from desktop grids towards service
grids, i.e. making desktop grids able to utilize free service grid resources.

1 Introduction

In the past years, two main grid concepts have evolved: service and desktop grids.
The main differences between the two concepts are the infrastructure topology and
elements, and the users’ role. In case of service grids [1], the infrastructure consists
of a set of services that must be maintained in order to keep them running: resource
brokers, information system services, storage areas, computational resources with

Zoltán Farkas
MTA SZTAKI, H-1518 Budapest, P.O. Box 63, e-mail: zfarkas@sztaki.hu

Péter Kacsuk
MTA SZTAKI, H-1518 Budapest, P.O. Box 63, e-mail: kacsuk@sztaki.hu

Manuel Rubio del Solar
CETA-CIEMAT, Paseo Ruiz de Mendoza 8, 10200 Trujillo, Spain, e-mail:
manuel.rubio@ciemat.es

∗ The EDGeS (Enabling Desktop Grids for e-Science) project receives Community funding from
the European Commission within Research Infrastructures initiative of FP7 (grant agreement Num-
ber 211727). The work presented here was partly funded by FP6 CoreGrid Network of Excellence
(contract number IST-2002-004265).

28 Farkas et al.

a frontend node (gatekeeper) and a set of worker nodes that actually process work.
Grid users are entities that have proper rights to use these services, this is achieved
by using certificates. Basically any kind of application can be executed on service
grids, that can also be executed on a traditional PC. Grid users make use of services
to run their applications, and it is the services’ task to perform the job execution.
Well-known examples for service grids are Condor [2], Globus [3] [4], LCG-2/gLite
(EGEE) [5], ARC [6] or Unicore [7]. On the other hand, desktop grids are very easy
to set up: a central service contains the set of jobs to run, and desktop PC owners
from all over the world can connect to offer their PC’s free CPU cycles for process-
ing the jobs by installing a very simple client application. So, in case of desktop
grids, the expression ’user’ is a synonym of ’service provider’ or ’computing re-
source owner’. The access to the desktop grid server is limited, so only dedicated
entities have the possibility to add jobs for processing. Typical application scenarios
for desktop grids are parameter study or master-worker applications. Examples for
desktop grids are BOINC [8], XtremWeb [9] or Condor2.

At the beginning of 2008, a new FP-7 founded project, EDGeS [10] has been
started that (besides others) aims to join the advantages of the two grid concepts by
creating an integrated infrastructure that supports both service and desktop grids.
An initial task of this work is to create a bridge that can be used to transfer appli-
cations between representatives of the two main grid concepts, i.e. make desktop
grids capable of running service grid jobs and vice versa. In this paper, we focus
on running desktop grid jobs within service grids, specifically, running BOINC jobs
within EGEE. In section 2 we present a few different solutions. Next, in section 3
we present our work. Afterwards, section 4 presents our observations about the so-
lution’s performance. Finally, in section 5 we discuss about possible extensions, and
conclude our work.

2 Existing solutions

In this section we present three approaches that solve interoperability between desk-
top and service grids, and compare them. The three approaches solve the following
issues: running BOINC applications on Condor, running XtremWeb applications on
Condor, and running BOINC applications on EGEE.

2.1 Running BOINC applications on Condor

The solution developed by MTA SZTAKI [11] enables exploiting of Condor re-
sources by BOINC. The idea behind the solution is to modify the BOINC client ap-
plication so it doesn’t start the real application for the job (or workunit, in BOINC

2 We rate Condor as a desktop grid, too, because it offers the exploitation of desktop grid machines

Utilizing the EGEE Infrastructure for Desktop Grids 29

terms), but executes a wrapper application that creates a Condor job by extracting
the workunit information and submits, watches and gets the results of the job in-
terfacing with Condor. In order to provide this functionality, the modified BOINC
client has to be run on a Condor submit machine, and is set up to report fake in-
formation about itself: instead of reporting the CPU number of the Condor submit
machine, the user has to set the number of Condor execution machines in the local
Condor pool, and this number is reported to the BOINC server as the number of
CPUs on the machine. With this trick, the BOINC server sends enough workunits
to flood the local Condor pool with BOINC jobs.

2.2 Running XtremWeb applications on Condor

XtremWeb is an open source platform for building desktop grids. In XtremWeb,
the Coordinator is responsible for storing jobs to be processed, and communicate
with Clients and Workers. Clients can be used to send work to the Coordinator, and
Workers are entities that actually process the created jobs. In [12] authors showed
that XtremWeb Workers can be submitted to Condor pools, so they fetch work from
the Coordinator and process the downloaded work on Condor worker nodes. Every
submitted Worker processes one unit of work. The solution assumes that the Work-
ers running on Condor worker nodes have internet connection to the XtremWeb
Coordinator.

2.3 Running BOINC applications on EGEE

The LHC@Home project [13] uses a similar solution to the one mentioned in sub-
section 2.2, but focuses on running BOINC applications on EGEE. The idea is to
submit BOINC clients to EGEE: the submitted job (the BOINC client) is assigned
to a worker node by the resource broker. Once the job is started on the allocated
node, the BOINC client connects to the BOINC server in order to fetch work, and
processes it. Once the workunit has been processed, its result is uploaded back to
the server machine. Just like the XtremWeb to Condor solution, this method also
assumes that worker nodes have the possibility to open outbound internet connec-
tions.

2.4 Summary of existing solutions

Table 1 shows a comparison of already existing solutions mentioned in subsections
2.1, 2.2 and 2.3.

30 Farkas et al.

Property BOINC to Condor XtremWeb to Condor, BOINC to EGEE
Firewall issues No Yes
Middleware overhead Some Almost none
Watch jobs Yes No
Implementation Some Almost none
Supported DG Basically any Depends on submitted worker
Modify client Yes No

Table 1 Existing solutions

In table 1 firewall issues means how the solution operates regarding internet con-
nections. The BOINC to Condor solution assumes there is no outbound connection
from the worker nodes, but the other two solutions do. By Middleware overhead
we mean the amount of communication required with the middleware (Condor or
EGEE). The BOINC to Condor solution has to keep track of all submitted jobs,
on the other hand the XtremWeb to Condor and BOINC to EGEE solutions only
submit workers, and from that point on the worker takes care of processing worku-
nits. The watch job property is a subset of middleware overhead, indicates whether
the solution has to keep track of submitted jobs or not. Implementation indicates
how much effort should be done in order to make the solution work. The supported
desktop grid in the BOINC to Condor solution depends on the method workunits
are mapped to service grid jobs (so basically supports any kind of desktop and ser-
vice grid), the other two solutions depend on the submitted workers. The BOINC to
Condor solution requires the modification of the official BOINC client, on the other
hand the XtremWeb to Condor and BOINC to EGEE solutions don’t.

3 Bridging from desktop grids to service grids

According to the summary of the already existing solutions in table 1, we propose
using a solution similar to the BOINC to Condor solution, as this method provides a
generic way to connect a desktop grid to a service grid, and assumes the connected
service grid is a black box, i.e. communicates only through a well-defined interface
the service grid provides.

As the first step of the EDGeS project, we have implemented a prototype of the
BOINC to EGEE bridge based on the BOINC to Condor solution. The implemented
prototype enables running workunits fetched from BOINC servers on an EGEE VO
in a coordinated way. Based on the BOINC to Condor solution, we had to implement
the following functionalities: create JDL submit files out of workunit informations,
use the EGEE WMProxy API to submit created JDL files, observe the execution of
submitted EGEE jobs, and finally download the results of finished jobs.

The outlines of the developed BOINC to EGEE bridge can be seen on figure
1. Following the Condor cluster integration solution, the bridge receives workunits
from the BOINC server using a modified CoreClient. The CoreClient starts a Job-

Utilizing the EGEE Infrastructure for Desktop Grids 31

Wrapper process for every workunit slot. This process is responsible for arranging
the previously mentioned functionalities (JDL file creation, submission, watching
execution, result download). Next, we will describe the different operations in de-
tail.

Fig. 1 Overview of the BOINC to EGEE bridge prototype

For every submission we generate a universally unique identifier (UUID)[16].
This UUID is used as a prefix for every file related to the management of a workunit.
Using this method, we can resolve filename conflicts of generated files.

3.1 JDL file creation

Job submission in EGEE is performed using JDL files[14], so in order to talk to
the resource broker, we have to create such a file. The starting point, the modified
CoreClient application created a very simple jobwrapper description file, that con-
tains the most important informations for running the downloaded workunit: the
name of the executable files and their location on the filesystem, the name of the
input files and their location on the filesystem, the name of the created output files
and their proposed location on the filesystem, and finally the main executable and its
command line arguments. The extra location on the filesystem attribute is crucial, as
BOINC stores references to the files in the workunit’s directory, not the real file con-
tents (e.g. an input file called in.txt in the workunit’s directory has the contents
../../projects/abc abc/in.txt <ID>, where <ID> is a unique identi-
fier).

Using this jobwrapper description file’s contents, the JobWrapper creates a com-
pressed archive containing every executable, input file, and the description file. It

32 Farkas et al.

also creates a wrapper script, that is able to uncompress the archive, execute the ap-
plication using the provided description file, and create a final compressed archive
containing the produced output files. Using these files, the JobWrapper creates a
JDL file, that uses the wrapper script as the executable, the wrapper script and the
input archive as the InputSandbox, and the output archive as the OutputSandbox.

The produced JDL file is very simple, as it can be seen on the following example,
where <ID> represents the generated UUID for the job, <ID>.tgz is the input file
archive, the script <ID>.sh is responsible for uncompressing this archive, start the
real executable, and finally create the output archive <ID>.out.tgz:

JobType = "Normal";
Executable = "<ID>.sh";
StdError = "stderr.log";
StdOutput = "stdout.log";
InputSandbox = {"<ID>.sh","<ID>.tgz"};
OutputSandbox = {"stderr.log", "stdout.log",

"<ID>.out.tgz"};
Requirements = (other.GlueCEStateStatus==

"Production");
Rank = (-other.GlueCEStateEstimatedResponseTime);
RetryCount = 10;
ShallowRetryCount = 10;

Now every information is gathered to run the job on an EGEE worker node.

3.2 Job execution

For the management of a job’s life cycle we’re using the EGEE WMProxy C++
API[15]. Job execution involves the following steps:

1. proxy delegation: this function requires a delegation identifier. We’re using the
generated UUID, as the delegation identifier.

2. job registration using the created JDL file: this methods awaits two arguments.
The delegation identifier and the JDL file. Using the already existing informa-
tions, we can register the job. However, this function call doesn’t start the job
yet.

3. input sandbox upload: the job registration returns a JobIdApi structure that
contains the registered job’s EGEE identifier. Using this identifier we have to
query the proposed locations (URIs) of InputSandbox files on the WMS server.
According to our experiments two URIs are returned: a GridFTP[17] one, and an
HTTPS one. In the bridge, we’re using the GridFTP URI to upload the wrapper
script and the input archive using the GridFTP C API.

4. job starting: once the input sandbox has been uploaded, we can trigger the job
start function using the jobStart function and the EGEE identifier.

Utilizing the EGEE Infrastructure for Desktop Grids 33

5. job progress watch: the submitted job’s status is periodically (every 5 minutes)
polled from the logging and bookkeeping service. We report every status infor-
mation, but assume the job has been finished only when it enters some terminal
status: aborted or finished with success.

6. job results download: this functionality is very similar to the input sandbox up-
load. We query the job’s output sandbox URIs from the WMS server, and fetch
every produced output file (an output archive, in our case) using the GridFTP C
API.

7. purging the job: this is the final step of a job’s life cycle. Once every result has
been obtained, we have to call the jobPurge function using the job’s identifier.
This function call frees every allocated space related to the job on the WMS
server.

4 Performance measurements

There are some aspects of performance question when considering the implemented
bridge. First, it is an important question what the performance requirements of the
bridge implementation are. Second, we would like to see if the bridge is really able
to perform as machine with n processors. Finally, it is a question how heavy the
implementation uses the EGEE services. All the tests have been performed process-
ing workunits of SZTAKI Desktop Grid (SZDG)[18] on the SEE-GRID[19] and
VOCE[20] virtual organizations of EGEE.

We can state, that the performance requirements of the bridge implementation
are very low. According to our measurements, managing the life cycle of a single
workunit requires at most one second of CPU time on a 1,8 GHz AMD Opteron
2210 processor.

Regarding the computing performance of the bridge, we have set up the follow-
ing test scenario: a machine with two processors processing SZDG workunits on
both CPUs, and a bridge installation capable of processing 20 workunits in paral-
lel. Ideally the performance of the bridge is expected to have about 10 times the
performance of the desktop machine. Initially the average credit granted to the two
’machines’ was identical, however the bridge has processed far more workunits than
the desktop machine. We explain this with the redundant computing of BOINC: al-
though the bridge processes a lot of workunits, the same workunits are also sent to
normal machines where these workunits are placed in queues, thus a canonical re-
sult will be created later. After a few days, the performance of the bridge started to
grow, and after a week’s operation, the average granted credit rates have become the
following: about 100 credits for the desktop machine, and about 800 credits for the
bridge, i.e. on longer terms the bridge has 8 times the performance of the desktop
machine, which is lower than the expected 10 times speed-up. The lower perfor-
mance can be explained with the overhead of EGEE and with the lower performance
of worker nodes in the selected VOs. The reliability of the final bridge prototype is
above 99%, only 6 out of about 750 workunits have finished with failures.

34 Farkas et al.

On EGEE hand, we have faced some major problems during the development
of the bridge. First, in order to make the bridge stable almost every function using
EGEE services has to be executed in a loop, trying to call the function at most
3 times for cases where an error might occur during the service calls. This extra
functionality has done a lot to achieve the bridge stability mentioned at the end of
the previous paragraph. Second, after some time the WMS refused to accept the
jobs. After a discussion with the VO administrators, we received the explanation
that the WMS has to be restarted periodically in order to make it stable. The restart
period wasn’t sufficient for the job submission rate the bridge created, so the restart
period had to be set shorter (to 6 hours instead of 24 hours).

5 Future work and conclusions

Based on the experiences in section 4, we propose extending the bridge with a job
queue. Entities in the job queue are already submitted jobs or jobs waiting for sub-
mission. In order to lower the usage of EGEE services, the bridge should periodi-
cally check if there are jobs that haven’t been submitted, and submit the unsent jobs
as parametric or collection jobs. Using this way the bridge won’t overload the WMS
server, thus the reliability of the bridge and the infrastructure used can be gained.
Besides this, the CPU usage of the bridge can be lowered even more.

In the paper we have presented an approach for running desktop grid workunits
on EGEE infrastructures. First, we have presented and compared existing solutions.
Next we have shown the outlines of the prototype, as the starting point we choose
the BOINC and Condor cluster integration created by SZTAKI. Here we have also
presented in detail every step that has to be taken in order to run a workunit on
EGEE. Finally, we have measured the performance of the created bridge and ex-
amined it in some aspects. According to our experiments, the performance of the
bridge is close to our expectations, and the reliability of the solution is very good.

References

1. I. Foster, C. Kesselman: The Grid 2, 2nd Edition, ISBN: 978-1-55860-933-4, Morgan Kauf-
mann, 2003.

2. T. T. D. Thain and M. Livny. Condor and the grid. chapter 11. John-Wiley & Sons, Ltd., 2003.
3. I. Foster, C. Kesselman: The Globus Project: A Status Report, Proc. IPPS/SPDP ’98 Hetero-

geneous Computing Workshop, pp. 4-18, 1998.
4. I. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems, IFIP International

Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.
5. The gLite webpage,

http://glite.web.cern.ch/glite/
6. M.Ellert et al.: Advanced Resource Connector middleware for lightweight computational

Grids, Future Generation Computer Systems 23 219-240, 2007.
7. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel, M.

Romberg, B. Schuller, and Ph. Wieder L. Grandinetti (Edt.): UNICORE - From Project Re-

Utilizing the EGEE Infrastructure for Desktop Grids 35

sults to Production Grids, Grid Computing: The New Frontiers of High Performance Process-
ing, Advances in Parallel Computing 14, Elsevier, 2005, pages 357-376

8. D. P. Anderson. Boinc: A system for public-resource computing and storage. In R. Buyya,
editor, Fifth IEEE/ACM International Workshop on Grid Computing, pages 4-10, 2004.

9. F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri and O. Lodygensky: Com-
puting on Large Scale Distributed Systems: XtremWeb Architecture, Programming Models,
Security, Tests and Convergence with Grid FGCS Future Generation Computer Science, 2004.

10. The EDGeS project webpage,
http://www.edges-grid.eu

11. Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovacs, A. C. Marosi, G. Vida, N. Pod-
horszki, T. Kiss: SZTAKI Desktop Grid: a Modular and Scalable Way of Building Large
Computing Grids, Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International

12. O. Lodygensky, G. Fedak, V. Neri, F. Cappello, D. Thain and Miron Livny: XtremWeb and
Condor : Sharing Resources between Internet Connected Condor Pools in Proceedings of
the Workshop on Global and Peer-to-Peer Computing on Large Scale Distributed Systems
colocated with IEEE/ACM CCGRID2003, Tokyo Japan, May 2003.

13. The LHC@home webpage,
http://lhcathome.cern.ch/lhcathome/

14. Job Description Language (JDL) Attributes Specification,
http://edms.cern.ch/document/590869/1

15. Workload Manager Proxy API C++,
http://trinity.datamat.it/projects/EGEE/wiki/apidoc/3.1/htmlcpp/index.html

16. DCE 1.1: Remote Procedure Call, Open Group Technical Standard, Document Number C706
August 1997 737 pages, http://www.opengroup.org/publications/catalog/c706.htm

17. GridFTP Protocol Specification (Global Grid Forum Recommendation GFD.20). W. Allcock,
editor. March 2003.

18. SZTAKI Desktop Grid webpage,
http://szdg.lpds.sztaki.hu/szdg/

19. The SEE-GRID VO webpage,
http://www.see-grid.eu/

20. The VOCE VO webpage,
http://egee.cesnet.cz/en/voce/

Integrating Condor Desktop Clusters with Grid

Konstantinos Georgakopoulos and Konstantinos Margaritis 1

Abstract Grid infrastructures today are expanding slowly because adding com-
puting resources is sometimes an expensive and bureaucratic procedure. In con-
trast, desktop grid technologies like Condor and B.O.I.N.C provide an easy and
inexpensive way of creating large distributed systems that provide their idle com-
puting time for job execution. We successfully tested the interconnection of a
Condor pool with an EGEE site and we are in the process of expanding this infra-
structure inside the University. We will also investigate the possible security, reli-
ability and connection issues as we envision the expansion of this infrastructure to
other remote computing resources like school computer labs.

Keywords: Desktop Grids, Condor, EGEE, Interconnection, B.O.I.N.C

1 Introduction

The majority of today’s production grid infrastructures use a organization and
computing model that is based highly on hierarchy, security, dedication of re-
sources (both computing and human) and continuous availability of systems in-
volved. Furthermore, the expansion of the current infrastructure is slow because
computing resources that are accepted as part of the grid are mainly expensive
dedicated clusters that meet some very specific criteria.

Other grid-like models, like the ones of Condor [10] and B.O.I.N.C [1], try to
harness the idle computing time of non-dedicated resources like personal desktop
computers and computer labs of academic organizations or even schools. These
models can provide an inexpensive mass computing power that would otherwise
be wasted. With the constant evolution of these technologies countries can now
capitalize on the use of their national computing infrastructures by adding them to
the grid.

In the following sections we outline the basics of a typical Grid infrastructure
and also the fundamental components of the Condor system. We then present the

Konstantinos Georgakopoulos and Konstantinos Margaritis
Department Of Applied Informatics, University Of Macedonia, Egnatias 156, Thessaloniki,
Greece, e-mail: kgeorga@uom.gr, kmarg@uom.gr

38 Konstantinos Georgakopoulos and Konstantinos Margaritis

technical specifications of the Grid-to-Condor interconnection followed by refer-
ences to similar attempts like the Live WN project [5, 8] and the Lattice project [7,
9]. Our testbed for this research was a Condor pool we set up and the gLite Pre-
Production site we administer as part of the EGEE [4] project. We finally present
our future plans in expanding this infrastructure and give some conclusions re-
garding this research.

2 General characteristics of Grid systems

A typical Grid infrastructure comprises of some basic components each of them
has a very specific function to execute. Taking as an example a typical gLite infra-
structure these basic components are [3]:

A Computing Element (CE) which is basically a collection of computing re-
sources at each site. A Computing Element includes a Grid Gate (GG) which is
the interface of the cluster to the outside world and a number of Worker Nodes
(WN) where the jobs actually run. The CE contains a number of queues to differ-
entiate some property of the job (e.g VO, job length, RAM required etc.).

A Workload Management System (WMS) which is responsible for accepting
jobs from users and then assign them to the most appropriate CE for execution.
The process of choosing an appropriate CE for the job is based on user require-
ments, locality of files and Computing Element load.

A User Interface (UI) which is the system where users log in, create a GSI
proxy certificate for authentication and submit their jobs to the WMS. Jobs are
created using a language known as Job Description Language (JDL).

When a user submits a job to a WMS the job is transferred to the WMS and the
match making process occurs. The job is then submitted to the appropriate CE
along with a wrapper script and the input files of the job are transferred to the
WMS for retrieval by the CE. When the job completes the output files are trans-
ferred from the CE to the WMS for retrieval by the user.

3 The Condor system

Condor is a high throughput system which has a similar architecture with the Grid
but it is focused on the efficient use of all available resources. Furthermore, Con-
dor has the ability of exploiting the idle time of non-dedicated computing re-
sources and also to manage resources that are added or removed dynamically. A
typical Condor cluster, or “pool”, has some basic components [10]:

A Submit Node which is the system where users log in and submit their jobs.
Condor provides its own job description language for job submission.

Integrating Condor Desktop Clusters with Grid 39

A number of Execute Nodes where the jobs finally run. The execute nodes
publish their characteristics to the pool so the user’s job requirements will be met
through a match making process that will take place.

A Central Manager which is the system responsible for accepting jobs and
finding the appropriate execute node for the job to run. The mechanism used by
Condor for matchmaking is known as ClassAds.

Another interesting key point is that new Execute Nodes can be added on the
fly because Condor, by default, manages the addition of new resources with an
access list based policy. Condor also doesn’t require dedication of resources. The
provider of Execute Nodes (e.g a university) can configure the nodes to provide
computing cycles only when the processor is idle or, for example, when the aver-
age system load is below some specific threshold.

4 Bridging Condor with gLite

The idea of expanding a Grid infrastructure using Condor is based on the fact that
LCG and gLite middleware can support Condor as a batch system although this is
not widely used. The process of connecting a Grid site with a Condor pool is not a
straight-forward process and the existing documentation is very limited and in-
complete. We based our initial steps on the documentation found on the related
CERN wiki [7] although further testing and configuration tweaking was necessary
to make the connection actually work. To test this interconnection we used our
gLite pre-production grid site we administer as part of the EGEE project.

4.1 Initial Setup

We began by setting up an autonomous Condor pool with four systems (a central
manager/submit node and three execute nodes). We then created a testing applica-
tion that would be used for submitting a large number of distributed jobs. The ap-
plication was essentially a brute force attack on a MD5 string which was appropri-
ately parameterized so it could be divided into autonomous sub-jobs. We tested
the pool using this application and we were focused mainly on the reliability that
Condor provides for running jobs. For example we simulated conditions when an
Execute Node was suddenly removed from the pool (e.g by removing the network
cable) and examined how Condor rescheduled the job to another node. We also
tested Condor’s checkpointing features with similar experiments. The results
showed that Condor handles very well this type of situations and jobs will not be
lost under any conditions.

40 Konstantinos Georgakopoulos and Konstantinos Margaritis

4.2 Creating the Bridge

After testing the Condor pool we proceeded by configuring the LCG CE of our
pre-production site to use Condor as a batch system. This change was made in the
main configuration file of LCG (site-info.def) in which we also created two con-
dor queues for the appropriate VO’s (dteam and ops). These queues act as a gate-
way and when the job is submitted to the CE it will be forwarded to the Central
Manager for final execution. We also changed configuration files mainly in the
information system so that the Condor queues are published correctly. One final
change was in the middleware component which is responsible for translating a
JDL job to a Condor job before submitting it.

For this bridge to work the LCG CE had to be configured as a Submit Node for
the Condor pool. So it was necessary to install the Condor software on the CE and
make the appropriate changes to the pool policy so that the CE could submit jobs
to the Central Manager.

After completing this interconnection the job flow follows the following steps:
� The user logs in to the User Interface of a Grid site and creates a proxy

certificate for authentication. He then submits a job in the JDL format
to the CE.

� The job is transferred to the WMS and it is forwarded to CE along
with a wrapper script.

� The CE translates the job from the JDL format to the Condor job lan-
guage and forwards it to the Central Manager via the Condor queues
and the appropriate Condor job submission command.

� The job arrives at the Central Manager where the matchmaking proc-
ess occurs and the job is sent to the appropriate Execute Node.

� The Execute Node communicates with the WMS for file retrieval and
then executes the job via the wrapper script produced by the WMS.

4.3 Final notes

We tested this infrastructure in the same way we originally tested the standalone
Condor pool. Condor provides the same reliability features for jobs even when
they are submitted through the Grid. One thing that must be pointed out is that job
checkpointing doesn’t seem to work for jobs submitted through the Grid and this
is caused by the wrapper script provided by the WMS. Changing this script so it
complies with the Condor requirements can be a possible solution to this problem.

Regarding security, Condor provides various ways of securing the pool regard-
ing who is allowed to submit jobs the pool and also provides many mechanisms
for user authentication. It also supports authentication via the x509 certificates that
are used in the GSI infrastructure of the Grid. The proxy certificate that is created

Integrating Condor Desktop Clusters with Grid 41

by the user on the UI gets forwarded to Execute Node so that proper authentica-
tion can be made with the WMS. Condor can also provide encryption in every
daemon-to-daemon communication so that certificates won’t be intercepted by
malicious users.

One important note is that by expanding the Grid with volunteered resources
we provide access to the job and the job data to users that are potentially mali-
cious. Traditionally Grid resources are trusted because they reside inside a com-
puter room and are controlled by system administrators. Volunteered resources are
not controlled by anyone except the user that provides them. It is clear that this
issue must be addressed either in the form of screening the resources added or by
some form of job protection on the Execute Node.

5 Related projects

The field of desktop grids is relatively new and new projects emerge that attempt
to provide a bridge to volunteer resources for the Grid.

The Live Worker Node project [5, 8] has created a live cd/dvd linux distribu-
tion that can transform any computer to a worker node for the Grid. The project
was created by a number of researchers at the National Technological University
of Athens and it is still being developed and tested. The project is fully compatible
with the existing EGEE infrastructure but still requires a central Computing Ele-
ment for nodes to attach. Furthermore the number of nodes that can attach to the
CE is fixed and cannot exceed a predefined number.

The Lattice project [7, 9] was started at the University of Maryland and has
created some GRAM components that can bridge a Globus/Grid infrastructure
with a B.O.I.N.C infrastructure. Via the GRAM components, jobs that are submit-
ted to Globus are translated to B.O.I.N.C work units and are executed on a
B.O.I.N.C project. This is a very interesting attempt and is still under development
but lacks further documentation for actually installing and using these compo-
nents.

A very promising attempt is starting with the EDGeS project [2] which will
create a bridge for the EGEE resources to desktop grids created with B.O.I.N.C.
The project will initially create the bridge so that B.O.I.N.C jobs can be forwarded
to EGEE resources and later on will create the bridge components so that Grid
jobs can be submitted to a B.O.I.N.C infrastructure.

6 Conclusions

Desktop grids can provide a solution so that countries can better exploit their al-
ready existing computing infrastructures rather then purchasing new expensive

42 Konstantinos Georgakopoulos and Konstantinos Margaritis

hardware every time the Grid infrastructure needs upgrading based on the current
trends. Furthermore, by involving large user and academic communities we can
create new social bonds and bring the science closer to the public.

Condor provides a reliable solution for creating large infrastructures of distrib-
uted computers that can potentially be added to the Grid. Our attempt is to further
investigate the possibility of creating Condor pools with scattered resources and
resolve the potential issues that arise from this expansion. Key points are security,
reliability and ease of deployment in order to present a viable proof of concept.

We can envision a future for the grid where all of these emerging technologies
(gLite, Condor, B.O.I.N.C, etc) will be incorporated into a single infrastructure.
Since the initial basic issues in the development of the Grid (establishing a stable
infrastructure, developing the middleware) are now resolved for the most part a
new social and technical challenge arises: Can the grid community embrace and
exploit these alternative solutions? It is possible that a new model for the Grid is
needed, one that will be less bureaucratic and more efficient.

References

1. Anderson, D. P., 2004. B.O.I.N.C. A system for public resource computing and storage. In
proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, 2004, Pitts-
burgh, U.S.A

2. Balaton, Z., Farkas, Z., Kacsuk, P., Kelley, I., Taylor, I. and Kiss, T., 2008. EDGeS: The
Common Boundary Between Service and Desktop Grids. In Proceedings of the CoreGrid In-
tegration Workshop,2-4 April 2008 , Crete, Greece

3. Burke, S., Campana, S., Lorenzo, M.P., Nater, C., Santinelli, R., Sciaba, A.: Glite 3.1 User
Guide (2008). https://edms.cern.ch/document/722398/ . Cited 07 Mar 2008

4. EGEE II project homepage. Enabling Grids for E-sciencE. http://www.eu-egee.org/. Cited 10
Dec 2007

5. Gorgatos, F., Kouretis, G., 2007. LiveWN: CPU scavenging in the Grid Era. In: Proceedings
of the3rd EELA Conference, 3-5 December 2007, Catania, Italy

6. Installation Instructions for Condor on the LCG CE
https://twiki.cern.ch/twiki/bin/view/EGEE/InstallationInstructionsForCondorOnTheLcg-CE .
Cited 15 Oct 2007

7. Lattice project homepage. http://lattice.umiacs.umd.edu/ . Cited 15 Oct 2007
8. Live Worker Node project homepage. Add Computational Resources to the Grid.

http://gridathome.sourceforge.net/index.php?page=news. Cited 20 Oct 2007
9. Myers, D. S., A. L. Bazinet and M. P. Cummings. 2008. Expanding the reach of Grid com-

puting: combining Globus- and BOINC-based systems. Pages 71-85. In E.-G. and A. Zomaya
(Eds.) Grids for Bioinformatics and Computational Biology, Wiley Book Series on Parallel
and Distributed Computing. John Wiley & Sons, New York.

10. Tannenbaum, T., Wright, D., Miller, K. and Livny, M., "Condor - A Distributed Job Sched-
uler", in Thomas Sterling, editor, Beowulf Cluster Computing with Linux, The MIT Press,
2002. ISBN: 0-262-69274-0

Prediction of the Jobs Execution on the
Community Grid with Added Network Latency

Jakub Jurkiewicz, Krzysztof Nowiński, Piotr Bała

Abstract In this paper we investigate behaviour of the grid system built of large
number of relatively unreliable processing units (CPUs). In order to simulate re-
alistic grid different mean times before failure (MTBF) are assumed for different
nodes. In addition, a simplified network model is included. We present results of
simulations on a model of such grid system and analyse its efficiency in terms of
total execution time of simple jobs.

1 Introduction

The majority of grid models, such as Network Weather Service [9] or GridSim
[4] and task schedulers for grids, are based on the assumption of limited number
of reliable computing nodes connected with high bandwidth network and focus
on large task scheduling in non-trivial workflows. Community grids based e.g. on
SETI@HOME [10] or BOINC [2] packaged are characterised by:

1. relative abundance of computing nodes
2. unreliability of nodes causing usually complete loss of current computation re-

sults
3. limitation of network performance varying with the current network traffic re-

gardless of the grid.

Jakub Jurkiewicz
Interdisciplinary Center for Mathematical and Computational Modelling (ICM), University of
Warsaw (UW), Pawińskiego 5a, 02-106 Warsaw, Poland, e-mail: kura@icm.edu.pl
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Krzysztof Nowiński
ICM UW, e-mail: know@icm.edu.pl

Piotr Bała
ICM UW, e-mail: bala@icm.edu.pl
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

44 Jurki ewi c z , Nowi ński , B a ł a

These limitations reduce usually job model to a series of trivially parallel tasks
scheduled to the computing nodes. The paper proposes a model of a community grid
developed for the purpose of experimenting with various task scheduling strategies,
taking into the above listed peculiarities of such grids.

2 Computational grid model

In this paper we focus on the grid built from a large number of unreliable units
connected to the supervisor server responsible for dividing job into individual tasks,
sending them to individual processing units and merging the results.

All computational units (nodes) are nearly identical, in respect of computational
speed and capacity. The nodes are vulnerable to failures. For purposes of our model
we assume a two peak distribution of MTBFs of nodes with peaks at 2/3 and 4/3
of global average MTBF. We assume a fixed probability of failure for each node
leading to exponential distribution of uptimes of this node (see [7]).

Network is built from seven rings of limited bandwidth, connected by (practi-
cally) infinite speed ring. Every node communicates only with the server. The net-
work is simultaneously used by other users (independent from the grid). Grid data
transfers have lower priority than other transfers, leading to a simple model of vary-
ing latency and bandwidth of the network links. We assume that connection between
a computational unit and a ring is the fastest ADSL (8 Mb/s). Server is connected
directly to the ring. Simulations are made for three types of rings: high speed rings
constant of 10 Gb/s, ATM ring of 150 Mb/s with constant usage of 12 Mb/s, and
ATM ring with usage taken from time series built on the real data basis with average
12 Mb/s.

Network and time series
Recent works [6] [1] showed that properly built time series can effectively predict
network traffic. However, most of the simulations were made for short term predic-
tions and small steps between measures. In our simulations we use tasks that need at
least 80 seconds for transfer before and after computations. Latency is usually 10-
20 ms for wide area networks - thus it can be neglected. We assume that the network
bandwidth is constant for 360 seconds and we take this as network step resolution
for our simulation. When we tested a real network, we found that SARIMA model
[3] (1,0,1)× (0,1,1)240 × (0,1,1)1680 fits best to the real data. Seasons’ lengths of
240 and 1680 represent daily and weekly cycles. We use for every ring,as history,
real data of point-to-point Internet traffic and during simulation we generate data
substituting, in algorithm for time series prediction with white noise generated from
normal distribution.

Task scheduling
In the model described here the job consists of independent tasks executed on dif-
ferent nodes. Traditional approach to the scheduling assumes that number of tasks

Pre di c t i on of t he Jobs Exe c ut i on on t he C ommuni t y Gri d wi t h Adde d Ne t work La t e ncy 45

is significantly larger than number of available nodes and a queue scheduler focuses
on the choosing of tasks to be executed.

Because in large grid infrastructures the number of nodes could be significantly
larger than the number of tasks, the scheduling should focus on picking up the best
processing elements for the execution. In the case of unreliable nodes a bad sched-
uler can assign tasks to the processing elements which will always go down before
task is finished and will take infinitely long time to complete. If tasks are sched-
uled randomly we can expect that only part of them will be lost and the job will be
finished in a reasonable time.

Below we will consider various scheduling strategies: random, higher MTBF
first, backup scheduling.

• Random strategy - the simplest possible method is to schedule a job to a node
randomly drawn from free nodes pool. It is important to simulate this baseline
for comparison. Any scheduler worse than the random one shouldn’t be used.

• High MTBF first - because computers uptimes are taken from exponential dis-
tribution it is reasonable to approximate uptime left by MTBF. This leads to a
scheduler assigning a job to a free node with the highest MTBF.

• Backup scheduling - means assigning a task to more than one node at a time. It
is the best strategy for the scheduling in system with infinite network speed, as in
Fig. 1. However, the simulation showed that such strategy is useless for systems
with limited network.

Network aware scheduler
Network aware scheduler is created from a scheduler by adding a rule prohibiting
task from execution on a node, when: Shr < ntot ×Sep and D×ntot/Shr < t je +D/Sep,
where D is a sum of sizes of data that need to be transferred before and after every
task, Shr is current bandwidth of ring to which the hub is connected, t je is time of
task execution (without transfers) and Sep is bandwidth of ring node connection, ntot

is number of nodes processing tasks (including transfer).
Since this simplified network awareness algorithm did not increase the grid per-

formance, we added additional condition prohibiting scheduling job to node if esti-
mated total completion time T is smaller than MTBF: T = t je + ttr < MT BF , where
ttr is time needed for transfer of data. If we assume that data needed to transfer is
identical for all nodes, then:

ntr

ntot
=

ttr
ttr + t je

(1)

ttr = D×

ntr

Shr
(2)

where t je is average computation time and ntr is number of nodes that are making
transfer of data. These equations are true only provided that hub ring is at least in
100% used. After substituting ttr in (1), calculating ntr and then substituting in (2),
we arrive at:

t je +
D

Shr
× (ntot −

t je ×Shr

D
) = t je + ttr < MT BF (3)

46 Jurki ewi c z , Nowi ński , B a ł a

3 Simulations

Simulation parameters
The schedulers have been tested on computations that are one week long. We as-
sume that during 5 hours on Monday morning there are no submission events and,
therefore, we can treat such time as a catch-up fine for our queue system.

We tested schedulers on a system consisting of different number of computers
(from 100 to 700) and one server. Using historical data from ICM cluster, we gener-
ated job submission for one week period. Each simulation contained 713 jobs, each
job consisted of 64 equal tasks involving computations lasting from 900 to 2700
second. Every task needs to send 80 MB of data to node before computations and
send back 80 MB after they are finished. We have tested average MTBF of 2700
seconds. Every simulation was repeated four times to minimise random variations.

Measures
We used two measures number of unfinished jobs at the end of simulation, and
average time (applied only for finished jobs), that takes from submitting a job to the
system to getting the results.

Simulation results

Results of simulation for the system with infinite speed network are presented in
Fig. 1 and Fig. 2.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 200 300 400 500 600 700 800 900 1000

A
va

ra
ge

 jo
b

to
ta

l t
im

e
(m

s)

Number of nodes

random
backup random

high mtbf first
 backup high mtbf

Fig. 1 Average MTBF 2700s, no network, av-
erage time that job spends on the system.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 u

nf
in

is
he

d
jo

bs

Number of nodes

random
backup random

high mtbf first
 backup high mtbf

Fig. 2 Number of unfinished jobs for average
MTBF 2700s, no network.

Results show that double schedulers, trying to finish the job as soon as possible
are better in case of a big number of computational nodes, and they are worse on
small grids. Moreover, as expected, choosing computer with higher MTBF first is
good strategy.

When network efficiency is taken into account the results change significantly -
see Fig. 3 and Fig. 4. Backup scheduler is not shown because it leads to unacceptable
results.

Pre di c t i on of t he Jobs Exe c ut i on on t he C ommuni t y Gri d wi t h Adde d Ne t work La t e ncy 47

Fig. 3 Average MTBF 2700s, average time that job spends on the system.

Fig. 4 Number of unfinished jobs for average MTBF 2700s.

The results are as follows:

• network aware scheduler combined with high mtbf first is the best strategy,
• schedulers that don’t care about network become worse with a raising number of

computing nodes,
• usually job submissions are correlated with available network bandwidth - there-

fore network with constant bandwidth shouldn’t be used for simulation purposes,
because it overestimates grid performance.

48 Jurki ewi c z , Nowi ński , B a ł a

4 Summary

The presented simulations confirm that job scheduling on the grid is not trivial. In
the presented model we have investigated node failure and its influence on the total
execution time of the job. We have shown that, contrary to classical scheduling,
retarding the execution of jobs, even if there are potentially free resources, could
lead to better results.

In future we plan to build a desktop grid and verify the presented model.

5 Acknowledgements

Work supported by the joint project of ICM UW and Telekomunikacja Polska
S.A 22/06/6727/K/2006/YCZ268 Grid System Monitoring and Control Tools un-
der grant FSO 023/2006.

References

1. Basu S, Mukherjee A, Kilvansky S (1996). Time series models for Internet traffic, Technical
Report GIT-CC-95-27, Georgia Institute of Technology.

2. Berkeley Open Infrastructure for Network Computing. http://boinc.berkeley.edu/.
3. Box GEP, Jenkins, GM, (1976). Time series analysis: Forecasting and control, , 2nd ed.,

Holden Day, San Francisco.
4. Buyya R, Murshed M (2002). GridSim: A Toolkit for the Modeling and Simulation of Dis-

tributed Resource Management and Scheduling for Grid Computing. In: The Journal of Con-
currency and Computation: Practice and Experience (CCPE), Volume 14, Issue 13-15, Wiley
Press.

5. SungJin Choi, MaengSoon Baik, ChongSun Hwang, JoonMin Gil, HeonChang Yu (2004).
Volunteer availability based fault tolerant scheduling mechanism in desktop grid computing
environment. In: Network Computing and Applications, 2004. Proceedings. Third IEEE In-
ternational Symposium..., (pp. 366– 371)

6. Groschwitz N, Polyzos G (1994). A time series model of long-term traffic on the NSFNET
backbone. In: Proceedings of the IEEE International Conference on Communications, ICC’
94.

7. Nurmi D, Brevik J, Wolski R (2003). Modeling machine availability in enterprise and wide-
area distributed computing environments. Technical Report CS2003-28, U.C. Santa Barbara
Computer Science Department.

8. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. (1992). Numerical Recipes in C: The
Art of Scientific Computing , 2nd edition, Cambridge Univ. Press, N.Y.

9. Wolski R, Spring N, Hayes J (1999). The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. In: Journal of Future Generation Com-
puting Systems,Volume 15, Numbers 5-6, (pp. 757–768).

10. Seti@HOME project website. http://setiathome.berkeley.edu/

II
GRID APPLICATIONS

The Porting of a Medical Grid Application
from Globus 4 to the gLite Middleware

Károly Bósa and Wolfgang Schreiner

Abstract In this paper, we compare two implementations of a grid-based software
system on the grid middleware Globus Toolkit 4 and gLite, respectively. This sys-
tem called “Grid-Enabled SEE++” is a grid-based simulation software that supports
the diagnosis and treatment of certain eye motility disorders (strabismus). First, we
developed a parallel version of the software with the help of Globus 4. Since we
met with some limitations of Globus 4, we also designed and developed a version of
SEE++ based on gLite. We focus on the differences between the initial Globus ver-
sion and the gLite version of our software system and report on some comparative
benchmark results.

Key words: “Grid-Enabled SEE++”, Grid Applications, Grid Middleware, Globus,
gLite

1 Introduction

Nowadays various types of grid middleware (Unicore, Globus, LCG, gLite, etc.) are
in use by several research projects. These systems have many similar features, but
there are almost no reports in literature which compare them next to each other in
similar circumstances. We had the opportunity to make such a comparison, since
we developed two versions of a grid application on the basis of the popular grid
middleware systems Globus Toolkit 4 [9] and gLite [8], respectively.

Károly Bósa
Research Institute for Symbolic Computation (RISC),
e-mail: Karoly.Bosa@risc.uni-linz.ac.at

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC),
e-mail: Wolfgang.Schreiner@risc.uni-linz.ac.at

52 Károly Bósa and Wolfgang Schreiner

Fig. 1 The Output of the “SEE++ to Grid Bridge” and the GUI of SEE++ Software System

The core software called “Grid-Enabled SEE++” is a grid version of the SEE++
software system [6, 12, 16] for the biomechanical 3D simulation of the human eye
and its muscles (see Figure 1). The software deals with the support of diagnosis and
treatment of strabismus, which is the common name of the misalignment of the eyes
where eyes point in different directions such that a person may see double images.
The goal of “Grid-Enabled SEE++” is to adapt and to extend SEE++ in several steps
and to develop an efficient grid-based tool for “Evidence Based Medicine” which
supports the surgeons in choosing optimal surgery techniques for the treatments of
different syndromes of strabismus.
The doctors intend to work with the software in an interactive manner (chang-

ing the eye model parameters by a manual trial and error method), hence the ade-
quate response times are essential for the usability of SEE++. It is also possible to
semi-automatize the determination of the patient pathology on the grid (a non-linear
optimization problem) by the procedure called pathology fitting [3].
In [3, 4], we combined the SEE++ software with the Globus middleware applying

both the pre-Web Service (pre-WS) and the Web Service (WS) frameworks and de-
veloped a parallel version of the simulation. By this, we speeded up this simulation
by a factor of 14–17.
Furthermore, we reported the prototype implementation of a medical database

component for “Grid-Enabled SEE++” [13], which is going to be used for storing
patient medical data with eye model parameters. These stored pathological cases
will be utilized as initial estimations by the new grid-based pathology fitting algo-
rithm presented in [3].

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 53

. .
 .

Client Client

. .
 .

GRID

(Hess Calc.)

(Hess Calc.)

WMProxy C++ API

PATHOLOGY FITTING
Request

AMGA C++ API

R−GMA C++ API

HESS CALC. Request

WMProxy C++ API

gLite−enabled SEE++2GRID

BRIDGE

SEE++ SEE++
WMProxy

Parametric Job

Parametric Job

WN k

Site n

Site m

DATABASE

AMGA Server

AMGA Server

DATABASE

R−GMA Information System

. .
 .

SEE++ Data
Miner

HESS Calc.

HESS Calc.

PATH. FITTER

WN j

. .
 .

HESS Calc.

HESS Calc.

WMProxy

WN i

WMProxy

PATH. FITTER

Publishing Contact Information

Searching for Published Server
and Database Contacts

Searching for Published Server
and Database Contacts

Current Architecture

Fig. 2 The Design of the gLite Compatible SEE++

Since we met with some limitation of the Globus Toolkit 4 [4], we also elaborated
an initial design of a SEE++ version compatible with the gLite grid middleware [5]
in the frame of “Enabling Grids for E-sciencE 2” (EGEE2) project [7].
The topic of this paper is to present a refined architecture adapted to the recently

implemented gLite-based SEE++ and to report a comparison between this new ver-
sion of our software system and its other version based on Globus 4. The new design
is described in Section 2. In Section 3, we focus on the new features of the gLite
compatible SEE++. Finally, we present in Section 4 an experimental comparison
with benchmark results between the Globus and the gLite-based versions.

2 The New Architecture based on gLite

As in the case of the Globus-based version, the initial component of the gLite-based
version is the “SEE++ to Grid Bridge”, via which the unchanged SEE++ client can
get access to the infrastructure of the grid (see the box in Figure 2 bordered by the
dashed line). Before the bridge accepts the computational requests from the SEE++
clients, it starts some grid-enabled SEE++ servers in the grid. These processes be-
have as some kind of “executer” programs for the computation tasks such that the
remarkable latencies of the job submissions for the computational requests can be
avoided. The “SEE++ to Grid Bridge” is able to split calculation requests of clients
into subtasks [3] and to distribute them among the servers (data parallelism).
Nevertheless, we found the same problem as in the Globus version of our soft-

ware, namely how to send back the contact information of the started server/executer

54 Károly Bósa and Wolfgang Schreiner

processes to the bridge. In the original design, we proposed to exploit an interest-
ing feature of the gLite Workload Management System (WMS) [17] called interac-
tive jobs which returns the corresponding data via interactive connections. How-
ever later we found that such a feature exists only as a theoretical option for job
submissions in gLite, but it is not supported by real grid architectures (EGEE [7],
int.EU.grid [10], etc.).
So we decided to apply the “Relational Grid Monitoring Architecture” (R-GMA)

information system [14] of gLite for this purpose, which allows users and grid ap-
plications to publish their own data. From time to time, each server announces into a
R-GMA table its address (hostname and port) together with the number of subtasks
received but not yet calculated by the server. The “SEE++ to Grid Bridge” runs a
query on the table R-GMA regularly as well and updates its list of the available
servers. This approach is much more versatile and sophisticated, since many kinds
of information (e.g. workload) can be published about all available SEE++ servers
to more than one bridge component. Each server is always started with two argu-
ments: its identifier (generated by the bridge) and a unique identifier of the bridge
(e.g. the address and port where the bridge is listening for the requests of the SEE++
clients). These two pieces of data are used as a primary key in the R-GMA system,
when a server publishes its own contact and workload information.
Every “SEE++ to Grid Bridge” can be tuned such that it either uses only those

servers that were started by itself or it always chooses for each calculation request
some servers from the pool of all servers available on the grid; this choice is made
with the help of R-GMA on the basis of the published workload information. A
server terminates, if it does not receive any computational request for a predefined
time interval (typically one hour).
The approach to apply executer jobs works only if the worker nodes (WNs) on

where these jobs are executed are not located within private subnetworks. To enforce
this constraint, we applied the following Requirement condition in the JDL [11] file
of the job submission:

Requirements = other.GlueHostNetworkAdapterOutboundIP==True;

This constraint guarantees that the SEE++ servers are started only on thoseWNs,
that are able to interact through the Internet. We also applied a Rank criterion, that
helps to choose WNs from those which fulfill the Requirement:

Rank = (other.GlueCEStateWaitingJobs == 0 ?
-other.GlueCEStateEstimatedResponseTime :
-other.GlueCEStateWaitingJobs);

According to this criterion, those WNs are preferred which either are idle (there
is not any scheduled job in the state ”WAITING”) and haveminimal communication
latencies or (if there are not enough idle WNs) which have the minimal number of
waiting jobs.
The further parts of the design regarding a distributed medical database based on

the database access service of gLite called AMGA [2] and the grid-based pathology
fitting algorithm (depicted on Figure 2) remain as they have already been proposed
in [4].

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 55

Globus−Based gLite−Based

by server jobs by server jobs

SEE++ clients interact
with the server jobs

Computations are
performed

via a bridge
component component

via a bridge

SOAP SOAPprotocol between the
software components

one by one
as single jobs

as a special
collection of jobs
(parametric job)

information of each job

by a "forked" and
terminated instance via R−GMA tables

not implemented
framework)

the job submission
automatic (part of

Server jobs are
submitted on the grid

Server jobs return
their contact

Resource discovery

Proxy renewal for
long−running jobs

not implemented
automatic (part of
the job submission

framework)

"File stage on"
no (Servers must be

nodes)
corresponding grid
preinstalled on the

submission framework)
to the WNs by the job
of the servers are sent
yes (the executables

Platform dependency platform where
Globus runs

on every
UNIX/Linux based

only on x86 platforms
with Scientific Linux
(dependency of the

existing gLite versions)

SEE++ VersionSEE++ Version

The communication

SEE++ Versions

Features

Fig. 3 A Comparison between the Two Versions of “Grid-Enabled SEE++”

3 New Features of the gLite-Based Version

In Figure 3, we summarized and compared the essential features of the versions
of our “Grid-Enabled SEE++” software system based on Globus Toolkit and gLite
respectively.
An advantage of the application of gLite is the implicit and automatic support

for resource discovery, which is part of the job submission framework i.e. hidden
from the API and UI levels. In Globus, if the developers would like to provide their
software with this property, they have to implement it on their own by using of a
non-trivial API (which we did not apply in our Globus-based SEE++).

56 Károly Bósa and Wolfgang Schreiner

One of the essential distinctions between the Globus and gLite-based SEE++ is
how the server contact information is returned to the bridge component. In Globus,
we applied some kind of “hack” for overcoming this problem. According to this,
a server started on a grid node forks itself after it has allocated a port number and
terminates [3]. Unfortunately, this technique may induce some problems in the lo-
cal resource management systems (e.g. PBS). Namely, such a local scheduler may
assume the resource is free and may assign some other jobs to it or it may kill the
forked process (in order to clean up). Although we could handle these situations in
the case of some local batch queueing systems by applying some simple techniques
described in [4], we could not find a general solution. By employing the new pub-
lishing method based on R-GMA, such a problem cannot arise at all (moreover there
exists additional benefits as discussed in Section 2).
We employed user proxy certificates stored on a MyProxy [15] server, since the

SEE++ servers have to be authenticated (by a valid proxy available on a MyProxy
server) for accessing the R-GMA grid service from remote WNs. As a side effect
of this requirement, our application is equipped with the automatic proxy renewal
function: the long-running SEE++ servers are not killed on the WNs by the local
resource management after the proxy of their user/submitter expires as long as the
proxy credential can be renewed from a given MyProxy server.
The SEE++ server jobs are executed on the gLite architecture as parametric jobs

via theWorkload Management Proxy (WMProxy) [17]. A parametric job is a special
type of job collections and it is defined as a set of jobs which are identical apart from
the values of their parameters. On the one hand, this speeds up the job submission
time compared to individual jobs and it saves a lot of processing time by reusing the
same authentication for all the jobs in the collection; on the other hand, it is possible
to monitor and control each of its jobs separately (via the parametric job handle).
At the submission of a parametric job, the JDL file is usually supplemented some
additional lines as follows:

[
...
JobType="Parametric";
...
Arguments = " PARAM bridge-URL:port";
...
StdError = "stderr PARAM .log";
OutputSandbox = {"stderr PARAM .log"
...
Parameters = numberOfServerJobs;
ParameterStart = 0;
ParameterStep = 1;
...
]

The JDL file for a parametric job may contain a built-in variable called PARAM
and three additional specific attributes Parameters, ParameterStart and Parameter-
Step. These attributes represent respectively the maximum value (or in case of non-
numeric parameter the set of values) of, the starting value of and at last but not least

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 57

the step for the modification for the (numeric) values of the parametric variable
PARAM . In our case, the variable PARAM , which has a different value for each
single SEE++ server job is employed to determine the identifier of a SEE++ server
(see the first argument in the line of JDL attribute Arguments above). Additionally,
we also assign a log file with a unique name (generated with help of the paramet-
ric variable) to the standard error of each server job; these files will be collected
if the executions of the server jobs are over (see the JDL attributes StdError and
OutputSandbox above).
To avoid the pre-installation of the SEE++ servers on the grid, we exploit the

“file stage on” feature of the WMProxy to transfer the executable and some other
input files to the correspondingWNs in the job submission phase.
Summarizing this section, our gLite compatible SEE++ has some new features,

which we achieved with investing relatively few efforts. To extend the Globus-based
version with these properties is either not feasible or it requires much more time and
human resources.

4 Experimental Comparison

The basis for this experimental comparison is the simulation of a typical medical ex-
amination called Hess-Lancaster test, whose parallel gridified implementation can
represent a wide group of grid applications, see Section 4.1. In Section 4.2, we
present the outcome of some benchmarks performed with this mentioned medical
simulation.

4.1 A Medical Simulation as the Basis of the Comparison

In [3], we combined the SEE++ software with the Globus middleware [9] and de-
veloped a parallel version of the simulation of the Hess-Lancaster test. Now, we
reimplemented this parallel simulation in gLite, too.
From the Hess-Lancaster test the reason for the pathological situation of a patient

can be estimated. The outcome of such an examination consists of two gaze patterns
of blue points and of red points respectively (see the diagram in the middle of the
GUI of SEE++ on Figure 1). The blue points represent the image seen by one eye
and the red points the image seen by the simulated other eye; in a pathological
situation there is a deviation between the blue and the red points.
The default gaze pattern that is calculated from the patient’s eye data by SEE++

comprises 9 points. Bigger gaze patterns with 21 and 45 points are possible and pro-
vide more precise results for the decision support in case of some pathologies, but
their calculations are more time consuming. The size of the gaze pattern determines
the size of the problem, too. The maximum number of grid jobs we used in a session
was 45, because gaze patterns used in medical examinations can consist of at most

58 Károly Bósa and Wolfgang Schreiner

3 25 309 45

0,92s 0,98s 1,06s 1,09s 1,15s

9,5s 10s 11s 15s 16s 20s

0,85s

1

Submission via Globus WS architecture

Submission via Globus pre−WS architecture

Number of SEE++ Server Jobs

Contact Information via R−GMA

Submission via WMProxy (gLite)
including Resource Discovery,
File Staging (2Mb) and Publishing 38s 46s 91s 142s 156s 224s

Fig. 4 Startup Times in Globus and in gLite Versions

45 gaze points (in the case of the application of 45 jobs, only one gaze point was
computed by one server job in a session).
Our experiences with the simulation of the Hess-Lancaster test on different mid-

dlewares can help and facilitate the work of many grid application developer re-
search groups, because its implementation represents the following very frequently
applied programming strategies of nowadays grid applications:

Parameter Study Since the calculations of each gaze points is completely inde-
pendent from each other, there is no communication among the server processes.
Hence our simulation is a typical example for the parameter study, where the
same algorithm is executed on several grid node but with different arguments.

Interactivity “Grid-Enabled SEE++” has other important characteristics that are
a distributed simulation backend connected to an interactive real-time user inter-
face (the doctors change the eye parameters by a manual trial and error method
and in turn they wait for the results of the simulation). These characteristics are
present in many classical grid monitoring applications and additionally there are
numerous research efforts for establishing interactive grid architectures [10].

4.2 Benchmarks

In some benchmarks, we have compared the effectiveness of the two versions of
“Grid-Enabled SEE++”. Figure 4 and Figure 5 depict the average execution time of
5 computations in different situations where 1, 3, 9, 25, 30 or 45 processors were
used on the grid (one server process was started on each processor).
The reported measurements were accomplished on different hardware architec-

tures in case of Globus and gLite respectively. The reason for this fact that we do not
have access to any grid testbed, where both required grid middlewares are deployed
and available on the same computational resources. Moreover we intended to inves-
tigate the behaviors and the applicabilities of our SEE++ versions on some real grid

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 59

Number of Jobs/Servers 1 3 9 25 30 45

Hess Test with Globus
Compatible SEE++ 27.18s 18.81s 9.11s 2.17s 2.10s 1.89s

Hess Test with gLite
Compatible SEE++ 39.48s 28.05s 16.87s 4.63s 3.03s4.21s

Fig. 5 Execution Times in Globus and gLite

architectures (as described in detail below) providing “production services” instead
of within ideal circumstances on an artificial grid testbed.
The test cases based on Globus 4 were executed on the Austrian Grid site al-

tix1.jku.austriangrid.at, which contains 64 Intel Itanium processors (1.4GHz) and
resides at the Johannes Kepler University (JKU) in Linz. The “SEE++ to Grid
Bridge” and SEE++ clients were always executed at the RISC institute located in
Hagenbergwhich has a one Gigabit/sec connection to the JKU. In case of 25 or more
processors, we used some processes on the grid site altix1.uibk.ac.at in Innsbruck
that comprises 16 CPUs of the same type.
The test cases based on gLite were performed on some clusters of the architecture

of the Int.EU.Grid Project [10]. The server jobs were randomly disseminated among
some clusters in Germany (122 CPUs), Poland (32 CPUs), Slovakia (32 CPUs) and
Spain (20 CPUs). All of these CPUs are based on Intel x86 and x86-64 architectures,
but their speed characteristics is unknown.
As a first step, we have compared the costs of the submissions of our SEE++

server processes via Globus pre-WS and WS architectures and gLite WMProxy, see
Figure 4. We found it quite challenging to start more than 20–25 jobs on the gLite
architecture, because in these cases some jobs often got stuck in the submission
procedure with the state “WAITING” for a long time (from 10 minutes to several
hours). Therefore, the values related to gLite are the average values for 5 “success-
ful” job submissions.
From the values listed in Figure 4, we can see obvious differences among the

overheads of the job submissions in the different architectures. Globus (both the
pre-WS and the WS architectures) seems much more efficient. Nevertheless, this
comparison is not completely fair with respect to gLite, since Globus performs only
simple job submissions to one or two dedicated sites, while in the startup phase gLite
additionally discovers resources, transfers files to the WNs (with a total file size of
approx. 2Mb) and finally publishes the server contact information via R-GMA.
In the second step, we have investigated the performance of our parallel grid-

based simulation on Globus and gLite, see Figure 5 and Figure 6. We do not report
different results for the tests run with Globus based on pre-WS and WS architec-
tures, because apart from how the SEE++ servers are started on the grid, there is not
difference the operation of the two Globus-based versions of our software. In these
test cases, we speeded up the simulation by a factor of 12–14 in Globus and by a
factor 9–13 in gLite.

60 Károly Bósa and Wolfgang Schreiner

Number of
Processors

Number of
Processors

5

10

15

20

25

1 3 9 25 30 45 1 25 30 453 9

30

35

EfficiencySpeedup

40 1

0,5

0,75

0.25

Globus Compatible SEE++
gLite Compatible SEE++

Fig. 6 Speedup and Efficiency Diagrams in Globus and gLite

Apparently the results achieved with Globus look better again, but as in the pre-
vious comparison the measured values do not reflect the whole picture: in the tests
based on Globus we employed homogeneous hardware and there were fast connec-
tions between the bridge and the servers with relatively consistent quality. In the
gLite tests the hardware environment was heterogeneous and the communication
latencies were higher with large variations. Nevertheless, the average values in Fig-
ure 5 are closer to each other when we applied 25 or more jobs, because in the
case of more jobs, the load can be more balanced among the various grid nodes.
These facts imply that the differences between the values concerning to Globus and
gLite on Figure 5 and Figure 6 are caused mostly by the disparity of the hardware
architectures of the two testbeds rather than by the applied grid middleware.

5 Conclusions and Future Works

Our comparisons show that while the Globus Toolkit 4 is faster and more efficient,
gLite is much more sophisticated and developer friendly. Therefore, it seems more
appropriate as a basis of further development.

Another difference of the middlewares is the quantity of existing documentation.
In case of Globus 4, the documents are often sketchy and the complete examples
are mostly missing (especially in case of the WS C APIs). On the contrary, there is
sufficient information and example source codes available in gLite.

Our next step will be the porting of our medical database to AMGA [2], which
provides a unified access to them with the grid style certificate-based authentication
and authorization. Since AMGA supports among other database systems MySQL
as well, it would be possible to reuse the same medical databases in the Globus
Toolkit 4 and the gLite environments. On the basis of these developments, we are
going to continue the implementation of the grid-based pathology fitting. These

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 61

achievements should make SEE++ an effective grid-based tool for giving effective
decision support to the surgeons before eye surgeries.

Acknowledgements The work described in this paper is partially supported by the Austrian Grid
Project [1], funded by the Austrian BMBWK (Federal Ministry for Education, Science and Cul-
ture) under contract GZ BMWF-10.220/0002-II/10/2007.

This work makes use of results produced by the Enabling Grids for E-sciencE project, a project
co-funded by the European Commission (under contract number INFSO-RI-031688) through the
Sixth Framework Programme. EGEE brings together 91 partners in 32 countries to provide a seam-
less Grid infrastructure available to the European research community 24 hours a day [7].

References

1. Austrian Grid home page. http://www.austriangrid.at
2. AMGA Project home page http://amga.web.cern.ch/amga/
3. Károly Bósa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. SEE-GRID, A

Grid-Based Medical Decision Support System for Eye Muscle Surgery, 1st Austrian Grid
Symposium, December 1-2, 2005, Hagenberg, Austria. OCG Verlag, pp. 61-74.

4. Károly Bósa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. A Grid Software
for Virtual Eye Surgery Based on Globus and gLite ISPDC 2007, Hagenberg, Austria, July
5-8, 2007. IEEE Computer Society, pp. 151-158.

5. Károly Bósa, Wolfgang Schreiner, Michael Buchberger The Porting of a Grid Software for
Virtual Eye Surgery from Globus 4 to gLite, Poster on the 3rd EGEE User Forum, Clermont-
Ferrand, France, Februar 10-14, 2008.

6. Michael Buchberger, Biomechanical Modelling of the Human Eye, Ph.D. thesis, Johannes
Kepler University, Linz, Austria, March 2004.
http://www.see-kid.at/download/Dissertation MB.pdf

7. EGEE-II home page, 2008. http://www.eu-egee.org
8. gLite 3.0.0 home page, 2008. http://www.glite.org
9. The Globus Tookit home page, 2008. http://www.globus.org/toolkit/

10. Int.EU.Grid Project home page, 2008. http://www.interactive-grid.eu/
11. Job Description Language Attributes Specification,

https://edms.cern.ch/file/590869/1/EGEE-JRA1-TEC-590869-JDL-Attributes-v0-8.pdf
12. Thomas Kaltofen, Design and Implementation of a Mathematical Pulley Model for Biome-

chanical EyeSurgery, Diploma thesis, Upper Austria University of Applied Sciences, Hagen-
berg, June 2002.
http://www.see-kid.at/download/Pulley Model Thesis.pdf

13. Daniel Mitterdorfer, Grid-Capable Persistance Based on a Metamodel for Medical Decision
Support, Diploma thesis, Upper Austria University of Applied Sciences, Hagenberg, July
2005.

14. Relational Grid Monitoring Architecture (R-GMA) home page. http://www.r-gma.org/
15. MyProxy home page, 2008. http://grid.ncsa.uiuc.edu/myproxy/
16. SEE-KID home page, 2008. http://www.see-kid.at
17. Workload Manager Proxy (WMProxy) C++ API Manual, 2008.

http://egee-jra1-wm.mi.infn.it/egee-jra1-wm/api doc/api docwmproxy cpp/

Euro-Mediterranean Centre for Climate Change
Data Grid

Sandro Fiore, Salvatore Vadacca, Alessandro Negro and Giovanni Aloisio

Abstract Earth Science is strongly becoming a data intensive and oriented activity.
Petabytes of data, big collections, huge datasets are continuously produced, man-
aged and stored as well as accessed, transferred and analyzed by several scientists
and researchers at multiple sites.
From the data grid perspective, a key element to search, discover, manage and

access huge amount of data stored within distributed storages is the related data and
metadata framework.
This paper describes the Euro-Mediterranean Centre for Climate Change Data

Grid dealingwith both architectural and infrastructural issues concerning the adopted
grid data and metadata handling systems.

1 Introduction

The next generation of climate modeling scientists and researchers will face a
complex and critical challenge, such as dealing with increasingly complex simu-
lation models and huge quantities of related datasets, which are already too mas-
sive for current storage, manipulation, archiving, navigation, and retrieval capabili-
ties [14, 4]. From the data grid perspective, a key element to search, discover, man-
age and access huge amount of data stored within distributed storage devices is the
metadata handling framework.
While from the data handling perspective several solutions are already avail-

able and are currently adopted, centralized solutions are usually proposed to face
up to metadata management. In this paper we propose the CMCC Data Grid Sys-
tem, a distributed data grid solution (leveraging P2P and grid protocols/services) to
the management of the climate data production of the recently established Euro-

S. Fiore, S. Vadacca, A. Negro and G. Aloisio
Euro-Mediterranean Centre for Climate Change, viale Augusto Imperatore 16, 73100 Lecce, Italy
e-mail: {sandro.fiore, salvatore.vadacca, alessandro.negro, giovanni.aloisio}@unile.it

Mediterranean Centre for Climate Change (CMCC) [10].
Taking into consideration the climate data growth rate, it is our considered opin-

ion that centralized solutions for metadata management are not feasible (they do not
scale as needed) and are not suitable to fully address availability, scalability, robust-
ness and efficiency at such large scale. Despite the classical approaches, data-grid-
enabled solutions greatly address scalability (users, data, queries, etc.), transparency
(access, integration, management, presentation) and efficiency (performance) allow-
ing the management of tens and hundreds of petabytes of distributed datasets. The
CMCC Data Grid (proposed within this work) exploits the CMCC Grid Metadata
Handling System, a framework that provides both access to and integration of cli-
mate metadata stored into different and widespread data sources. It provides a strong
virtualization layer in grid to deal with both metadata search and discovery, and ac-
cess, delivery and management of scientific datasets.
The outline of the paper is as follows. In Section 2, we talk about the CMCC ini-

tiative, whereas in Section 3 we describe the CMCC Data Grid, highlighting main
requirements, metadata management, data grid architectural and infrastructural is-
sues as well as the CMCC Data Distribution Center. In Section 4 we recall related
work. Finally, we draw our conclusions in Section 5.

2 The CMCC Initiative

The Italian government, through the Ministry of the Environment and Protection
(MATT), the Ministry of Education, University and Research (MIUR), and the Min-
istry of Economy and Finance (MEF) recently started an initiative aimed at estab-
lishing a national research centre devoted to climate research.
This Centre, namely theEuro-MediterraneanCentre for Climate Change (CMCC),

aims at furthering knowledge in the field of climatic variability, including causes
and consequences, through the development of high-resolution simulations and im-
pact models. The Centre represents the most ambitious initiative undertaken in Italy,
within the framework of the National Research Plan, and specifically the National
Research Plan on Climate.
The realisation of the Centre has been assigned to a consortium of six Italian

research Institutes led by the National Institute of Geophysics and Vulcanology
(INGV) and composed by the FondazioneEni EnricoMattei (FEEM), the University
of Salento (UNILE), the Italian Aerospace Research Center (CIRA), the University
of Benevento (UNISANNIO), and the Consorzio Venezia Ricerche (CVR).
The CMCC aims at producing models, simulations, computational and data grid

middleware, applied software and training of personnel of the highest qualifications,
both in the specific field of climate modelling, and in the field of information tech-
nology. The centre develops, verifies and maintains documented models of climatic
simulation. It also maintains through a data grid environment climate datasets for
the study of climate variability and for the validation of simulation models. Finally,
it provides a support to users with consultancy concerning the efficient use of sys-

64 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

tems, models and data of the Centre. Particular care is dedicated to promoting and
spreading the activities and results of the CMCC.
One of the main challenges of the CMCC (which is strongly discussed within

this work) is to build a data grid infrastructure able to effectively and notably help
scientists in managing, sharing, publishing, accessing and analyzing their climate
data.

3 CMCC Data Grid

In the following we highlight the key factors related to the CMCC Data Grid en-
vironment. After discussing the main requirements, we will emphasize metadata
management issues, data grid architecture and infrastructure discussing the grid
metadata handling system. Moreover, we will also introduce the CMCC Data Dis-
tribution Centre, which is the primary entry point (web gateway) to the CMCC.

3.1 CMCC Data Grid Requirements

In the following we highlight the main requirements that have led the data grid ar-
chitecture design at CMCC, trying to clearly identify and summarize the related key
issues.
Heterogeneity. The CMCC data environment is intrinsically heterogeneous both

from the hardware and the software point of view. This leads to require data grid
middleware able to deal with diverse platforms, storage systems, metadata manage-
ment systems, etc.
Security. The CMCC security requirement includes: a unified security paradigm,

single sign-on, mutual authentication between the involved actors, data encryption,
global and local authorization.Moreover, data grid services (both for data and meta-
data) must provide a wide set of data access policies to supply users with a fine
grained control aiming at well defining who can access what/where and under what
conditions.
Transparency. The CMCC data grid must provide a high level of transparency

concerning the access to data andmetadata. This goal can be achieved both with data
grid services able to uniformly cope with different back-end data systems (from the
middleware point of view) and with intuitive clients and charming high level inter-
faces such as graphical user interface and/or grid portals (from an end-user point of
view).
Scalability, autonomy and fault tolerance. Such a climate data grid environ-

ment must provide a high level of scalability and autonomy. The candidate approach
for the management of data and metadata must be fully decentralized due to: (i) the
nature of the CMCC infrastructure (distributed), (ii) the huge amount of data that
will be produced and managed (petabytes of data), (iii) the number of involved

Euro-Mediterranean Centre for Climate Change Data Grid 65

actors (which can potentially increase in the next years). Such a decentralized ap-
proach leads to a high level of autonomy, fault tolerance and scalability.
Interoperability. The proposed CMCC environment must be highly interoper-

able from different points of view. Basically, interoperability will be achieved by
standard adoption. Concerning the middleware, the adopted paradigm will be ser-
vice oriented; more specifically, the deployed data grid services will be WS-I com-
pliant, which means based on SOAP, XML and WSDL W3C standards. Moreover,
OGF [30] specifications issued by the DAIS-WG [7] will be taken into account for
the metadata services. Concerning the CMCC metadata schema, it will be inferred
starting from ISO [18] standards for geographic metadata information as strongly
required by the interdisciplinary CMCC metadata working group.

3.2 CMCC Metadata Management

Metadata management is a critical issue in such a distributed context, since it allows
searching, discovering, describing, cataloguing, annotating datasets, making them
effectively accessible and shareable by the scientific community. Concerning this
topic, it is worth noting here that two elements are complementary and fundamen-
tal:metadata schema definition and software metadata stack. They jointly contribute
(see Fig. 1) to really address metadata management.
Concerning the former (metadata schema definition, physical layer), since the

start of the CMCC project it was established an internal working group to prop-
erly address and define the CMCC metadata schema. A preliminary outcome
of this working group is the CMCC Metadata Agreement v1.0. It has been de-
signed addressing and fulfilling CMCC user requirements as from the consoli-
dated ISO 19115 [19] (Geographic Information Metadata) and ISO 19139 [20]
(Geographic MetaData XML encoding, an XML Schema implementation derived
from ISO19115) standards. The CMCC metadata agreement represents a tradeoff
between the need to fully and richly describe climate datasets, scientific experi-
ments, models, citations, etc. and to have a light metadata publishing process for
data providers. Additional details about the CMCC Metadata Agreement are out of
the scope of this paper and will be extensively discussed in a future work.
On the other side, concerning the latter (software metadata stack), the data grid

group at CMCC defined the entire stack from an architectural point of view. It in-
volves the following four layers: low-level APIs, low-level services, high-level ser-
vices and applications. In the following, we describe each of them in more detail.

Low-level APIs. At this level, we find core libraries to automatically extract
metadata from the input/output files of scientific experiments. These are exploited
by low-level data publication services to generate/extract metadata and provide au-
tomatic ingestion primitives. These libraries must be able to interact both with rela-
tional (RDBMS [31]) and hierarchical (XML) database engines.
Low-level-services. At this stage we find the basic services to deal with metadata

66 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

HTTPS

GSI
(VOMS)

GSI

SSL

CMCC Data
Distribution Portal

Command Line
Interface (CLI)

OPeNDAP-g Metadata Service
(GRelC DAIS P2P)

Storage Service
(GRelC DSS, etc.)

Core Data and Metadata Services GridFTP

Metadata
Schema

Metadata
Catalog Storage

Applications

Data Grid
Middleware

Fabric

Security

Fig. 1 Software metadata stack

(metadata extraction, search, validation, etc.). They represent the core services for
advanced metadata facilities developed at higher levels.
CMCC gridmetadata handling service. At this level we can find a complete set

of metadata facilities (search and browsing of metadata, publishing, etc.), exposed
as Web Services (the CMCC grid metadata handling service described in Section
3.5), secured by design and available for external use of client applications.
Applications. At this stage we can find an user-friendly and complete suite of

client applications dealing with metadata search, discovery, browsing, annotation,
etc. Some examples are the CMCC Metadata Command Line Interface and the
CMCC Data Portal.
Additional infrastructural and implementation details about the CMCC grid

metadata handling service and the application layer (CMCC Data Portal) can be
respectively found in Sections 3.5 and 3.6.

3.3 CMCC Data Grid Architecture

The CMCC Data Grid Architecture (in the large) is depicted in Fig. 2. As we can
argue, the proposed architecture is intrinsically distributed and by design provides
both data and metadata handling facilities. It exploits the data grid paradigm to
manage heterogeneous and geographically spread datasets, efficiently transfer files,
carry out distributed search and discovery, provide transparent and ubiquitous web
access to remote storage devices supplying the user with an integrated, secure, easy
to access and robust environment for climate change data management.
In the following we detail the needed components for such a distributed envi-

ronment, highlighting project requirements while considering 4 key aspects: data,
metadata, user interface and security.
Data. Storage devices, disk caches, tape libraries, etc. should be considered at

Euro-Mediterranean Centre for Climate Change Data Grid 67

this level. They will physically contain the data produced during the scientific ac-
tivity. Storage devices are distributed among the main CMCC centers and datasets
will be accessible in grid through grid storage service interfaces that represent a key
element of the data grid middleware.

Fig. 2 Data Grid Architecture

Metadata. At this stage we need to consider the Database Management Sys-
tems (DBMSs), which will physically contain the climate metadata. The CMCC
grid metadata handling service will provide access in grid to the stored metadata
and will be able to cope with different data models (hierarchical and relational) as
well as heterogeneous DBMSs (RDBMSs and XML-DB engines) at the same time.
Since metadata (as well as data) will be physically distributed, the grid metadata
handling system will exploit a P2P network to (i) interconnect all of the involved
peers, (ii) enhance scalability and (iii) provide users with distributed search and dis-
covery facilities.
User Interface. From the user perspective, the access to the metadata handling

system can be carried out either by means of a command line interface or a web-
based one (CMCC Data Distribution Center). The second choice (see Section 3.6)
is better, since a data grid portal represents a user-friendly interface and it provides
the highest level of pervasiveness and ubiquity. Different web-gateways could be in-
stalled on different sites to provide a higher level of availability and fault tolerance.
Security. Within the proposed data grid architecture, there will be two related

components: a CMCC Certification Authority, to issue user, service and host certifi-
cates, and a CMCC authorization service (centralized), to enhance both scalability
and flexibility concerning role-based authorization management.

68 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

3.4 CMCC Data Grid infrastructure

The CMCC Data Grid Infrastructure (see Fig. 3) is basically made up of the fol-
lowing layers: fabric, data grid middleware and application. Moreover, the security
framework is part of the proposed infrastructure as well and it should be considered
orthogonal to the previous ones.
In the following we will describe our actual infrastructural choices concerning

physical storage devices and DBMSs, grid services, security framework, data grid
portal, etc. bearing evidence of the move from the architecture design towards a real
grid infrastructure and motivating how our technical choices can address and fulfill
projects requirements.
Security framework. Concerning security, we decided to adopt the widely ac-

cepted and de-facto standard Globus Grid Security Infrastructure (GSI) [34] proto-
col. The full adoption of this security framework provides: mutual authentication
based on X509v3 certificates (issued by the CMCC Certification Authority), au-
thorization, data integrity and confidentiality, delegation, etc. Moreover, we provide
role-based authorization by means of a VOMS [1] server, deployed in Lecce and
acting as a centralized CMCC authorization service. VOMS allows role-based au-
thorization management through groups and roles. It enhances scalability and flexi-
bility concerning user data access policies management. Even if it is centralized, to
provide fault tolerance the same service will be mirrored at two other sites (Bologna
and Capua). Several groups and roles for CMCC users (i.e. scientists, administra-
tors, etc.) have been defined to provide a direct mapping between classes of users
and capabilities/privileges, both for the adopted data and metadata grid services.

Fabric. At this level we find the distributed storage and DBMS facilities to

CMCC
Graphical User Interface, Data Grid Portal,

Command Line Interface (CLI)
Application Layer

SOAP over GSI httpg protocol

SEARCH - DISCOVERY - PUBLISHING
BROWSING - DISPLAY

METADATA EXTRACTION
SEARCH - BROWSING - QUERY - VALIDATION

DISCOVERY - DELIVERY MECHANISMS

BASIC ACCESS SERVICES (for XML and RDBMS)
AUTOMATIC EXTRACTION - VALIDATION - INGESTION

METADATA AND TRANSLATION LIBRARIES

High Level Services

Low Level Services

Low Level APIs

Metadata
schema

Metadata
catalog XML Doc/DBPhysical Layer

WS-I
Interface

Fig. 3 CMCC Data Grid Infrastructure

Euro-Mediterranean Centre for Climate Change Data Grid 69

manage both files and databases. Disk caches, storage systems and tape libraries
(several petabytes of aggregate storage) allow users to store huge experimental cli-
mate datasets (potentially composed of millions of files). Concerning the metadata
management, different CMCC centers chose diverse DBMS solutions to manage
their own metadata. Right now, while in Lecce (main production site) there is an
Oracle DBMS, Bologna and Capua run Postgresql.
Middleware. From a technological point of view, for the data grid part we

adopted two different services developed within the Grid Relational Catalog Project
(GRelC) [2]: GRelC Data Storage Service (GRelC DSS) [12] and GRelC Data Ac-
cess [13, 11] and Integration Service (GRelC DAIS, which is the adopted grid meta-
data handling service). In the next phase we plan to extend the middleware adding
data replication services.
- GRelC DSS virtualizes and grid enables heterogeneous physical storage re-

sources. The aim of this data grid service is to efficiently, securely and transpar-
ently manage collections of data on the grid promoting flexible, secure and coor-
dinated storage resource sharing, across virtual organizations, taking into account
novel grid standards and specifications. The GRelC DSS is a WS-I compliant web
service server. To address security and performance requirements, the GRelC DSS
was conceived as a pre-threaded GSI and VOMS enabled web service server, sup-
porting gridFTP and HTTPG (HTTP over GSI) for file transfer and written in C
language. However, additional information can be found in [12].
- GRelC DAIS provides data access and integration facilities concerning meta-

data management (the GRelC Data Gather Service (DGS) [3] was the ancestor of
this service and it provided only basic data integration capabilities). GRelC DAIS
is a GSI and VOMS enabled web service server addressing extreme performance,
interoperability and security. The GRelC DAIS provides advanced functionalities
to transparently integrate heterogeneous, distributed and geographically spread grid
data sources (through P2P connected GRelC DAIS nodes). It is worth noting here
that the GRelC DAIS: (i) is fully GSI enabled, (ii) offers data access and integration
capabilities, (iii) is compliant with W3C standards as well as emerging OGF specifi-
cations, (iv) supports VOMS role-basedmanagement, (v) leverages on grid/P2P pro-
tocols, (vi) is fully compatible both with gLite [15] and Globus [16] middlewares,
(vii) provides support for local and global authorization, (viii) allows dynamic bind-
ing to relational DBMS as well as XML-DB engines as well as (ix) leverages a rich
set of core metadata libraries for automatic metadata extraction, conversion, etc..

management, etc. to access and manage grid-databases; additional functionalities
concern asynchronous queries. Moreover, delivery mechanisms exploiting stream-
ing, chunking, compression and prefetching allow efficient metadata delivery with
high level of performance (in terms of query response time, number of concurrent
accesses, etc.). Within the CMCC context it represents the key component of the
grid metadata handling system (see Section 3.5).
Starting from the ESG [8] experiencewe plan to take into considerationOPeNDAP-

g [23] servers in order to have GSI and gridFTP support to the classical OPeNDAP
server [29]. As a final remark, in the next phase we plan to include SRM [33] and

Basic functionalities include: query submission, grid-dbmanagement, user/VO/ACL

70 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

grid middleware for data replication between storage systems (based on the GRelC
DAIS server) to produce replicated datasets at several sites increasing data availabil-
ity.
Application. At this level we find the classical user interface based on a CLI ap-

proach and so providing a wide set of commands to interact with the entire CMCC
data grid system. Analysis tools, as well as clients to carry out search, discovery
and publish activities on metadata/data are also provided to climate scientists and
providers.
Moreover, a data grid portal (CMCC Data Distribution Center, see Section 3.6)

will ease the access to the entire CMCC production activity (i) providing high level
interfaces, (ii) simplifying the metadata search and discovery phases as well as the
climate metadata publishing. It provides a seamless and ubiquitous way to access to
the entire CMCC data production.

3.5 CMCC Grid Metadata Handling System

The CMCC Metadata Handling System is a key element for the management of the
distributed scientific activity. Each CMCC centre has production capabilities since
it maintains supercomputers to run models, storage devices to holds datasets and
DBMSs to manage metadata.
The proposed system is able to provide both access to and integration of metadata

stored on different and geographically spread CMCC metadata sources leveraging
on a P2P infrastructure/network of GRelC DAIS (CMCC grid metadata handling
service). There is no single point of failure and no centralized management for this
service due to the scalable architecture.
Within the CMCC Data Grid, the GRelC DAIS topology is a connected graph

involving all of the sites. A GRelC DAIS is deployed at each site, providing meta-
data access and management functionalities for the local metadata DB. Moreover,
it provides metadata integration and query forwarding capabilities for distributed
searches.
The metadata DB consists of two parts: a relational database containing basic

information about the available datasets (abstract, title, temporal and geographical
extent, keywords, link to the XML document describing the entire dataset, etc.) and
an XML database containing a collection of XML documents (one for each dataset,
experiment or service) reporting all of the information about the related datasets.
The XML schema of these documents is the aforementionedCMCCmetadata agree-
ment.
The metadata search, discovery and access is based on the following procedure:

• the CMCC user submits (using a valid proxy) the search query to a selected
GRelC DAIS (called agent node);

• for each submitted query, the GRelC DAIS performs a double action: (i) for-
wards the query to the neighbors (this action is then recursively carried out by
other GRelC DAISs) and (ii) submits the query to the local metadata DB (re-

Euro-Mediterranean Centre for Climate Change Data Grid 71

lational part). The query path is called direct-path and it is inferred at runtime
on a best effort basis. It is worth noting that, using a Universal Query Identifier
(UQI), duplicate queries are discarded and cycles/loops are avoided, as they are
identified by the distributed routing algorithm;

• the GRelC DAIS (through the reverse-path) recursively retrieves, collects and
merges partial results coming from its neighbors. The global answer is then
stored on the agent node;

• the user checks the status of the query on the agent node and retrieves the resultset
as it becomes available. At this stage the query response describes a filtered list
of climate datasets satisfying user requirements;

• after having identified the target dataset (and so the target GRelC DAIS), the user
can access to its full XML metadata description by directly querying the XML
database of the target GRelC DAIS. The complete (or a filtered version) XML
metadata document is then retrieved on the client side (it then contains gridftp url
to download experimental data through direct access to the grid storage services).

The entire process leverages on a two-step query: integration (concerning the rela-
tional databases) and access (regarding the XML ones).
It is important to remark that each GRelC DAIS is linked to at least two neigh-

bors to provide high level of fault tolerance. Hops To Live (HTL) and Time To
Live (TTL) support allows specifying time and space parameters/constraints for the
distributed queries.

3.6 CMCC Data Distribution Center

The CMCC Data Distribution Center is the Data Grid Portal available at CMCC.
It provides a ubiquitous and pervasive way to ease data publishing, climate meta-
data search and huge datasets access by the scientific community. Since it does
not centralize any functionality concerning authorization or authentication for fault
tolerance reasons it could be mirrored at several sites providing several web entry
points to the CMCC system.
The grid portal security model includes the use of HTTPS protocol for secure

communication with the client (based on X509v3 certificates which must be loaded
into the browser) and secure cookies to establish and maintain user sessions. An
user can create its own proxy directly from the browser without needing to run grid-
proxy-init or voms-proxy-init commands on a separate shell. Security is guaranteed
only by exploiting grid user certificates (providing as input the only users PEM pass-
phrase). No login (username & password) information must be provided by the user
and/or must be managed/stored on the portal side.
The CMCC DDC is now in a pre-production phase and it is currently used only

by internal users (CMCC researchers and climate scientists). Right now it offers
several functionalities, which can be classified as follows:

72 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

• Login/logout to/from the grid to authenticate the grid user and open/close an
HTTPS session.

• GRelC DAIS Server List to manage the list of GRelC DAIS servers. Usually
administrators introduce their own servers as well as end-users specify the agent
nodes they usually query.

• Search Engine to perform search and discovery activities on the web portal by
introducing one or more of the following search criteria: horizontal extent (which
can be specified by interacting with a geographic map), vertical extent, tempo-
ral extent, keywords, topics, creation date, etc. By means of this page the user
submits the first step of the query process on the distributed CMCC metadata
DB (relational part). After that, she can choose one or more datasets retrieving
and displaying the complete XML metadata description (from the browser). This
way, the second step of the query process is carried out accessing to a specific
document of the CMCCmetadata DB (XML part). After that, through the web in-
terface, the user can access to and download the data stored on the storage device.
Requests concerning datasets stored in deep storage are served asynchronously.

• Metadata Insert/Update allows CMCC data providers to populate metadata
within the CMCC metadata DB (both relational and XML part) through guided
web pages. This functionality is intended both for new data and for update of
existing ones.

• Visualization Map allows users to display monitoring information about the cur-
rent GRelC DAIS network deployment, managed datasets, system administra-
tors, site name, etc. It is intended for monitoring and administration purposes.

4 Related Work

In the last years, other projects addressed similar issues at an international level
(Earth System Grid [8], C3-Grid [5], Nerc DataGrid [24]), with important differ-
ences (with respect to the proposed CMCC initiative) from the middleware, meta-
data schema and metadata handling system points of view.
The Earth System Grid (ESG) [4, 23] integrates supercomputers with large-scale

data and analysis servers located at numerous national labs and research centers to
provide a seamless and powerful environment that enables the next generation of
climate research. The ESG project concentrates a lot of emphasis has been concen-
trated on the infrastructural part; it exploits Globus middleware and concerning the
data grid part it leverages GridFTP services, Storage Resource Manager, Replica
Location Service and Opendap-G servers. Concerning metadata management, ESG
adopts a centralized relational database deployed at NCAR (directly queried by
the portal) for descriptive or logical metadata which accurately describes a climate
model experiment by means of a Climate Model Metadata [9] (CMM). Concerning
location or physical metadata (for replica management), ESG adopts a hierarchical
and distributed framework based on Replica Location Services [17].
The C3Grid [32, 21] project has been set up to enable an easier and more ef-

Euro-Mediterranean Centre for Climate Change Data Grid 73

ficient resource management for the climate community, in order to improve the
efficiency of scientific work both in terms of data storage and of computing. C3Grid
strongly addresses data processing and data reuse through (i) portal integration of
data processing workflows, (ii) grid workspace with data/job co-scheduling and (iii)
metadata generation part of workflows. It offers an interoperable framework able to
deal both with gLite and Globus based environments.Moreover, C3Grid provides an
uniform discovery of German climate data related providers (DKRZ,WDCClimate,
IFM-Geomar, PIK, GKSS) through: (i) ISO 19115/19139 metadata based profile,
(ii) OAI-PMH [28] harvesting of metadata and GridSphere based Portal. Finally a
central metadata index is used for metadata search from the C3Grid portal.
The NERC DataGrid [24] (NDG) is a UK e-Science project that provides dis-

covery of, and virtualised access to, a wide variety of climate and earth-system
science data. Climate Science Modelling Language information Model (CSML) [6]
has been developed by the NDG project as a standards-based data model and XML
markup for describing and constructing climate science datasets. It uses concep-
tual models from emerging standards in GIS to define a number of feature types,
and adopts schemas of the Geography Markup Language (GML) where possible
for encoding. In the NDG project a lot of emphasis has been devoted to metadata
model [26], approach to discovery and use of data [27], data interoperability in the
climate sciences [35], NDG security [22], rather than the data grid infrastructural
part (from a grid middleware point of view), compared with the other projects we
mentioned before. Initial delivery services did not conform to any standard, de facto
or otherwise. Concerning distributed climate metadata search, NDG Discovery [25]
is now based on Open Archives Initiative Protocol for Metadata Harvesting.

5 Conclusions and Future Work

The paper presented a complete overview of the CMCC Data Grid environment, a
distributed system aiming at managing huge amount of climate data for the scien-
tific community.
We discussed several issues, concerning the architectural design and the infras-

tructural implementation, highlighting metadata access, integration and manage-
ment (CMCC grid metadata handling system), security (at different levels), grid
portal (CMCC DDC). We also presented a complete list of functionalities provided
by the CMCC DDC.
Future work will be related to the enhancement of the infrastructural part (caching

capabilities of the P2P metadata handling system, new query responses, metadata
replication issues), the addition of new components for climate datasets replication
and the CMCC DDC extensions. Moreover, the CMCC metadata agreement will
be further extended and completed taking into account new scientific requirements.
Data publishing will be strongly supported through portal web pages too, in order
to ease and speed up the related process.
Future work will be also related to the implementation and deployment of com-

74 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

ponents able to transparently and securely process climate datasets (by means of
dataflows) and exchange data (providing replicas) between the internal CMCC cen-
tres. This work will leverage existing grid technologies (as discussed within this
work) and new ones in the next years, providing an enhanced collaborative environ-
ment to (i) describe data and workflow processes, (ii) manage and access to huge
climate datasets, (iii) provide easy to access visualization and post-processing tools,
(iv) manage replicated datasets, (v) increase the sharing of scientific results and new
knowledge.

References

1. Alfieri, R., Cecchini, R., Ciaschini, V., Dell’Agnello, L., Frohner, A., Gianoli, A., Lorentey,
K., Spataro, F.: VOMS, an Authorization System for Virtual Organizations. In Proceedings of
the European Across Grids Conference, pp. 33-40 (2003)

2. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: The Grid Relational Catalog Project. In: Ad-
vances in Parallel Computing, Grid Computing: The New Frontiers of High Performance
Computing, L. Grandinetti (Ed), pp.129-155, Elsevier (2005)

3. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: GRelC Data Gather Service: a Step
Towards P2P Production Grids. In: Proceedings of 22nd ACM SAC 2007, Seoul, Korea, pp.
561-565 (2007)

4. Bernholdt, D., et al.: The Earth System Grid: Supporting the Next Generation of Climate
Modeling Research. In: The Computing Research Repository (CoRR) (2007)

5. C3grid project - http://www.c3grid.de
6. Climate Science Modelling Language (CSML) - http://ndg.nerc.ac.uk/csml
7. Database Access and Integration Services WG (DAIS-WG) -
https://forge.gridforum.org/projects/dais-wg

8. Earth System Grid - http://www.earthsystemgrid.org
9. Earth System Grid II - Final report - http://datagrid.ucar.edu/esg/about/docs
10. Euro-Mediterranean Centre for Climate Change (CMCC) - http://www.cmcc.it
11. Fiore, S., Cafaro, M., Negro, A., Vadacca, S., Aloisio, G., Barbera, R., Giorgio, E.: GRelC

DAS: a Grid-DB Access Service for gLite Based Production Grids. In: Proceedings of the 4th
International Workshop on Emerging Technologies for Next-generation GRID (ETNGRID
2007) - June 18-20, 2007 - Paris (France) - pp. 261-266 (2007)

12. Fiore, S., Mirto, M., Cafaro, M., Aloisio, G.: GRelC Data Storage: Lightweight Disk Storage
Management solution for bioinformatics ”in silico” experiments. In: Proceedings of the 20th
IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS 2007) -
June 20-22, 2007 - Maribor (Slovenia) - pp. 495-502 (2007)

13. Fiore, S., Negro, A., Vadacca, S., Cafaro, S., Mirto, M., Aloisio, G.: Advanced Grid DataBase
Management with the GRelC Data Access Service. In: Proceedings of the 5th International
Symposium on Parallel and Distributed Processing and Applications (ISPA 07) - August 29-
31, 2007 - Niagara Falls (Canada) - LNCS 4742, pp. 683-694 (2007)

14. Foster, I.: Service-Oriented Science. Science. Vol. 308, no. 5723, pp 814-817 (2005)
15. gLite: Lightweight Middleware for Grid Computing - http://glite .web.cern.ch/glite
16. The Globus Project - http://www.globus.org
17. Globus Replica Location Service - http://www.globus.org/rls
18. ISO - International Organization for Standardization - www.iso.org
19. ISO 19115:2003 Geographic information - Metadata -

http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=26020
20. ISO/TS 19139:2007 Geographic information - Metadata XML schema implementation -

http://www.iso.org/iso/ iso catalogue/catalogue tc/catalogue detail.htm?csnumber=32557

Euro-Mediterranean Centre for Climate Change Data Grid 75

21. Kindermann, S.: Climate Data Analysis and Grid Infrastructures: Experiences and Perspec-
tives. In Proceedings of the Grid-Enabling Legacy Applications and Supporting End Users
Workshop (GELA) - June 20, 2006 - Paris (France): within the framework of the 15th IEEE
International Symposium on High Performance Distributed Computing (2006)

22. Lawrence, B.N., Kershaw P., Blower, J.: Practical access control with NDG-security. Submit-
ted and accepted, AHM 2007 (2007)

23. Middleton, D.E., et al.: Enabling worldwide access to climate simulation data: the earth sys-
tem grid (ESG) In: Scientific Discovery Through Advanced Computing (SciDAC 2006) -
June 25-29, 2006 - Denver, CO. Published in Journal of Physics: Conference Series 46, pp.
510-514 (2006)

24. Nerc Data Grid - http://ndg.badc.rl.ac.uk
25. Nerc Data Grid Discovey - http://ndg.nerc.ac.uk/discovery
26. O’Neill K., et al.: The Metadata Model of the NERC DataGrid. In: Proceedings of the UK

e-Science All Hands Meeting, Cox, S.J.(Ed.) ISBN 1-904425-11-9 (2003)
27. O’Neill K., et al.: A specialised metadata approach to discovery and use of data in the NERC

DataGrid. In: Proceedings of the UK e-Science All Hands Meeting, Cox, S.J.(Ed.) ISBN
1-904425-21-6 (2004)

28. Open Archives Initiative - Protocol for Metadata Harvesting v.2.0 -
http://www.openarchives.org/OAI/openarchives protocol.html

29. OPeNDAP - http://www.opendap.org
30. Open Grid Forum - http://www.ogf.org
31. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edition. Prentice

Hall(Ed.), Upper Saddle River, NJ, USA (1999)
32. Schindler, U., Brauer, B., Diepenbroek, M.: Data Information Service based on Open

Archives Initiative Protocols and Apache Lucene. German e-Science Conference 2007,
Baden-Baden (2007)

33. Shoshani, A., Sim, A., Gu, J.: Storage Resource Managers: Essential Components for the
Grid. In Nabrzyski,J., Schopf, J.M., Weglarz, J.(Eds.): Grid Resource Management: State of
the Art and Future Trends. Kluwer Academic Publishers. (2003)

34. Tuecke S.: Grid Security Infrastructure (GSI) Roadmap. Internet Draft (2001) -
http://www.gridforum.org/security/ggf1 200103/drafts/draft-ggf -gsi-roadmap-02.pdf

35. Woolf, A., et al.: Standards-based data interoperability in the climate sciences. EGU 1st Gen-
eral Assembly (2004)

76 S. Fiore, S. Vadacca, A. Negro and G. Aloisio

Towards a GRID-Based Digital Library Management
System

Gheorghe Sebestyén-Pál, Doina Banciu, Tünde Bálint, Bogdan Moscaiuc, and
Ágnes Sebestyén-Pál1

Abstract: This paper describes an ontology-based approach for the design of a
digital library management system dedicated for scientific and technical purposes
ant it analyses the issues concerning the implementation of a digital content
management system on a GRID infrastructure. The authors propose an
implementation model that benefits from the services offered by a GRID
middleware. As part of the solution two in-depth search techniques are presented.

1 Introduction

As the information quantity grows in an exponential rate, content administration,
management and dissemination are becoming critical aspects of today’s
information society. The way in which content is managed influences the
efficiency of activities in many fields. Digital content is one of the few “products”
that can be manipulated, processed and commercialized purely with electronic
means. The growing attention regarding ubiquitous computing and the huge
amount of existing information sources is leading towards a world where sophisti-
cated information management is becoming a crucial requirement.

The architecture of a future digital libraries (DL), as outlined in DELOS project
[1], should be able to allow any users transparent access and modification of all
the digital content anytime from anywhere in an efficient, effective and consistent
way. The term digital library has a variety of potential meanings, ranging from a
digitized collection of documents that one might find in a traditional library to
collections of all kind of digital information along with the services that make the
information useful to all possible users (e.g. Internet search engines, library
systems).

A first necessary step in the process of designing a DL system is the
specification of goal(s) and required features and functionalities. It is also
important to establish the group of users or entities (e.g. an organization or
company) to whom the DL is designated. This analysis revealed that a DL
management system should offer powerful user functionalities (such as search,

Gheorghe Sebestyen-Pal, Tunde Balint, Agnes Sebestyen Pal
Technical University of Clu-Napoca, G. Baritiu no. 26-28, email:
gheorghe.sebestyen@cs.utcluj.ro

Doina Banciu
University of Bucharest, email: banciud@ici.ro

78 Towards a digital content management system

browse, annotation) and that it should guarantee quality of service as well (such
as availability, scalability, performance). Moreover, it should be extensible, easy
to install and maintain and it should assure inter-operability with other DL
applications.

Current developments on Service-oriented Architectures [2], Peer-to-Peer and
Grid computing promise more open and flexible architectures for DLs. With the
help of these technologies researchers wish to solve the problems which arise due
to increased heterogeneity of the content, services and metadata, as well as due to
the omission of a central control instance.

In [3] the authors evaluate the feasibility of using a Grid infrastructure as sup-
port for a digital content management system. The outcome of this paper is that
Grid computing can be used mainly for computer-intensive, in-depth search, on
huge volumes of data.

This paper presents the main requirements and guidelines for the implementa-
tion of a digital content management system and offers an architectural solution
for a generic digital library dedicated for scientific and technical purposes. As cen-
tral part of this architecture is the concept of digital object, which allows associa-
tion of physical documents (files), metadata and functionalities based on different
criteria. This approach allows definition of multiple relations and offers different
perspectives (views) on the existing repository of digital documents. An important
aspect emphasized in the paper is the need for powerful in-depth search techniques
that allows data retrieval and classification adapted to the needs of the users.

The rest of this paper is structured as follows: Section 2 present some related
project; Section 3 introduces the main concepts used in a digital library; Section 4
presents the main requirements for a digital library system; Section 5 presents a
proposed model for a digital library for scientific and technical purposes; Section
6 describes some solutions regarding information retrieval in a digital library;
Section 7 describes some experimental results. Finally, Section 8 contains the
concluding remarks.

2 Related Work

In the last decade, in order to achieve higher computing performance, greater data-
storage facilities or an enhanced cooperative research infrastructure, an intense re-
search activity was performed in the direction of GRID infrastructures. At the be-
ginning, GRID computing facilities were developed mainly for scientific pur-
poses. Nuclear and high energy physics, bio-chemistry and aero-spatial research
are some examples of fields that require huge amount of storage resources and
high performance computing facilities. CERN is one of the main promoters of
GRID research; the experiments which will be made in the next years at CERN
will generate a huge amount of data that must be stored in real-time on distributed
databases. The EGEE [13] initiative is intend to develop the necessary GRID

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 79

computing infrastructure that covers the storage and processing requirements for
the high energy physics experiments.

As part of the EGEE initiative, the Diligent project is intended to define and
implement digital libraries on GRID infrastructure. In the first stage the research
team tried to identify the requirements imposed for a digital library in two very
different areas: arts (paintings) and satellite imaging. Based on these requirements
a GRID-based digital library architecture was specified and implemented [14];
now the final release of the library services is available.

The Delos Network of Excellence is a European research project intended to
define and implement digital libraries on new computing and communication
technologies. The main contribution of this project was the definition of goals and
scope for the research in the field of digital libraries. The workshops and confer-
ences organised through the project revealed new functional and architectural re-
quirements for digital library systems; the concept of digital library evolved from
a static digital document repository to a more dynamic knowledge exchange envi-
ronment.

The goal of the BRICKS project [15] is to design a user and service-oriented
space to share knowledge and resources in a multi-cultural heritage. The aim is to
define a digital library architecture for a very broad and heterogeneous user com-
munity that involves cultural heritage and educational institutions, research com-
munity, industry, and citizens. BRICKS offer automatic indexing and annotation
functionalities, access services, multimedia document generation facilities and a
collaborative environment between distributed users. Its architecture is decentral-
ised and service-oriented.

The aim of the OpenDlib project [16] was to develop a software toolkit that can
be used to set up a digital library according to the requirements of a given user
community. The system allows generation of new documents and harvesting of
content from existing sources.

Other significant implementations of digital libraries are the Fedora and the
DSpace open source software. Fedora is organised around the concept of digital
objects, which are a collections of physical documents and their associated meta-
data. DSpace is a DL framework with basic store, access and search functional-
ities, useful to instantiate digital libraries for dedicated purposes.

Based on the experiences from the above presented projects the authors tried to
identify and test those facilities of a digital library that can be mapped on a GRID
infrastructure. The identified drawbacks are caused mainly by the way in which
jobs are executed today in a GRID structure.

The main arguments regarding the fact why a digital library system could bene-
fit from a Grid infrastructure are the following:

� the volume of documents stored in a digital library is huge and the
data is distributed

� concurrent access to documents for a great number of users require
replicated data and multiple search engines

80 Towards a digital content management system

� multimedia streaming for many users require dedicated servers and re-
served communication bandwidth

� automatic data indexing and annotation require high performance
computing facilities

� users should be organised in virtual organisations in order to access
and control different parts of a digital library’s repository

� complex data-processing procedures can be applied on the library’s
documents in an easier way with the job distribution facilities offered
by a GRID infrastructure

� the reaction time for complex processing procedures may be reduced
to an acceptable interval (e.g. acceptable for an interactive processing)
in case of GRID computing

Taking into consideration that today digital libraries are dynamic repositories of
distributed knowledge intended to facilitate information exchange and cooperation
between remote users, their implementation requires an adequate computing and
communication infrastructure. GRID middleware services can cover many of the
facilities needed to implement the main services of a digital library. The following
sections present a possible approach and an architectural model for a digital li-
brary system.

3 Ontological Approach for DL Design

As cooperation and interoperability between distributed applications are important
requirements for modern ITC products, an ontological approach offers the neces-
sary basis for platform and implementation independent data exchange.

In the case of digital libraries an ontology-based design offers more flexibility
in organizing the digital content and allows qualitatively improved information re-
trieval. Instead of key-words or metadata based search the user may navigate
through complex relations (links) between digital objects and contexts. The pre-
sent paper is focused mainly on digital content used in technical and scientific
fields and therefore the concepts and relations upon which the digital library
model is built are specific for these fields. For instance terms like project, confer-
ence or scientific article are important concepts in the present model, but they may
be of less importance for digital libraries built in other fields.

Terminology proves to be a barrier in describing a digital library, because some
words have different connotations for people of varying backgrounds [4]. In order
to eliminate ambiguities it was considered useful to specify the meaning of some
concepts and terms.

The first concept is that of digital library, defined as a collection of digital con-
tent dedicated for a well defined purpose and to which a number of users (actors)
and specific functionalities are associated. Digital libraries may be dynamically
created, modified and deleted in accordance with a given goal or purpose. It serves
a given community of users organized in virtual organizations, providing the

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 81

means for content preservation, data access and cooperative work. For example a
digital library may be created as support for a research project, for an academic
course or for a scientific event (e.g. conference). This approach is significantly
different form that of a digitized classical library mainly because of the library’s
goal and its accompanying content manipulation functionalities.

In accordance with the present model a digital library contains items called
"digital objects". Information stored in a digital object is divided into "data" and
information about the data, known as "properties" or "metadata". As outlined in
[5] a digital object should have a machine and platform independent structure that
allows it to be identified, accessed and protected, as appropriate. A digital object
may incorporate not only informational elements, i.e., a digitized version of a pa-
per, movie or sound recording, but also the unique identifier of the digital object
and other metadata about the digital object.

Digital objects may be organized in “collections”, in accordance with some
given criteria. A digital collection is a set of document-type and/or multimedia in-
formation created by information professionals for a user community or a set of
communities. A digital collection may contain multiple other collections, giving in
this way the possibility for hierarchical constructions. A digital object may be part
of a number of collections, even if it is preserved as a single item. For instance an
article may be: part of a given author’s paper list, a document of a conference and
in the same time a result of a research project.

A community of users, associated with a given digital library is structured as a
“virtual organization”. The members of a virtual organization can belong to differ-
ent real organizations distributed in all over the world, but they all share a com-
mon goal (e.g. work on a common research project). In achieving this goal they
share their resources e.g. knowledge, experimental results, instruments, etc., for
the duration of their collaboration. A virtual organization will be enabled to dy-
namically create and modify its own collection specifying a number of require-
ments on the information space (e.g. content domain, document type). In a virtual
organization users may have different “roles”. A role defines the data access rights
for a group of users in a virtual organization. Such rights may be: read-only, crea-
tion, modification or deletion of digital objects, allocation of access rights to other
users, etc.)

This paper presents the basic concepts characteristic for an ontology that mod-
els the domain of technical and scientific content. The elementary component of
the digital library is the digital object consisting of a data and a metadata part.
Many of the digital object types taken into consideration are borrowed from the
Dublin Core resource type proposal [6]. The digital object types include concepts
like article, book, manual, technical and financial documentation, technical and
scientific report, master or PhD thesis, etc. Collections group digital objects to-
gether and define more complex digital content required for representing projects,
academic courses or events like conferences or workshops.

The concept of virtual organization can be used to model different activities and
interactions between users of the digital library. Figure 1 demonstrates a way to

82 Towards a digital content management system

model projects. The research team responsible for developing the project forms
the virtual organization. Each user involved in the project participates as a mem-
ber of the organization. The members have access to the resources of the project
based on the role defined in the organization. The digital content produced during
the activities of a project form a collection of digital objects (reports, articles etc.).
Such collections of objects can be presented at events (for example conferences).

Fig. 1. Ontology for technical and scientific content
Another representative example for the use of digital libraries is the context de-

fined by academic courses. The digital objects consist of lectures, course notes,
books, laboratory works, slideshows posted by lecturers or professors. Students
have a more limited access regarding the collection of the course material, gener-
ally only being allowed to read (and not modify) the digital content. Specific digi-
tal documents that can be considered useful in the given context are course web-
sites, attendance charts, assignment lists, assessment information (grades), etc.

The ontology-based model of DLs presented above can be considered an effi-
cient solution for representing and organizing digital content. On one hand the
concepts and interactions involved are defined in a logical and accessible way en-
suring that both the developers and the users of the system can easily understand
the model. On the other hand the set of concepts included in the representation are
selected and defined in such a way as to ensure the ease of interaction and com-
munication with existing or standard models of libraries, supporting knowledge
sharing tasks such as exchanging data among databases, integrating databases with
other databases and providing network-based services for data processing.

4 Requirements for a DL System

There is a set of core digital library functionalities that every digital library should
provide. This set includes: content submission, storage, indexing and efficient data
access. Extra functionalities may be required such as: intelligent discovery of ob-

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 83

jects (documents, video, images, etc.), automatic metadata extraction, annotation
and document classification.

In important issue that a DL management system must consider is information
storage. The designer has to take into account beside the space requirements, the
fact that information resources must be persistent and highly availability. Given
that a digital object has many parts (metadata, preservation files, delivery files),
another issue that arises is the interconnection of these parts. Possible solutions for
data persistency are: replication, mirroring or migration, although all of these
techniques have some drawbacks (like keeping consistency among replicas).

Traditional digital libraries keep content under control in their local repositories
and offer access only for their registered users. But in a decentralized, distributed
architecture, metadata and also the content have to be available for all parties re-
gardless of their location. Decentralized architectures by definition avoid having
central control, because these are candidate single point of failure and perform-
ance bottleneck. Therefore, metadata (catalogue information) must be spread in
the community. A naive approach for metadata searching would be to distribute
queries to all members, but it is obvious that this solution is not scalable. Hence,
efficient metadata access and querying are very important challenges.

Access to content and data processing services must be regulated by access
policies. These policies refer to virtual organizations, users, roles and operations
on digital content. These can specify, for example, that a collection of objects are
only visible to a particular group of users.

The users of a digital library require a good quality of service (QoS), i.e. an ac-
ceptable level of non-functional properties. Ensuring the desired QoS is not trivial.
It involves many functions such as: security, e.g. authorizing of the request, en-
cryption and decryption as required, validation; logging for auditing and dynamic
rerouting for fail over or load balancing. QoS is also measured in the average re-
sponse time of the system to complex queries and the precision or relevance of the
returned results

But probably the most important aspects, which determine the quality of a digi-
tal library management system, are the search and retrieval services. Therefore
section 5 is dedicated to this subject.

5 A DL Model for Scientific and Technical Purposes

In order to achieve the necessary requirements a system organized into three lay-
ers is proposed. Each layer consists of a number of components, as presented in
Figure 2.

84 Towards a digital content management system

Fig. 2. Reference Architecture
The presentation layer contains components that communicate with the world

outside the system. It contains the web user interface and the Open Archives Ini-
tiative protocol for metadata harvesting service.

The business layer deals with managing the content, the users and the virtual
organizations. With the help of the history recorder one can track the user activi-
ties. This information can be used to improve the future search results. Security
management deals with authorizing, authenticating and auditing the users.

The user and virtual organization management offers the support for authentica-
tion, authorization and auditing. The search engine deals with information re-
trieval, identifying documents or sub-documents that meet information needs ex-
pressed in the form of queries interpreted by the query processor.

Grid technologies allow creating distributed grid services to hide the complexity
of the underlying resource network, which is the central concept of grid comput-
ing philosophy [7, 8]. The Grid offers new techniques that enable computational
tasks on a set of distributed computers connected by a network. Combining infor-
mation retrieval with the emerging Grid services information collections can be
optimized. The Grid scheduler distributes the computationally-intensive opera-
tions (e.g. in-depth search, classification, etc.) on the available executor nodes in
order to assure a minimum response time.

The physical storage layer is responsible for physical storage of metadata and
content. It also contains the implemented ontology which contains the main con-
cepts.

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 85

A relational database is used to store all the information about the organization
of content, metadata, information about users and authorization. The system also
uses the relational database in order to maintain indices that users can browse.
These functionalities can be offered by any standard SQL database that supports
transactions, such as MySQL.

6 Information Retrieval in DLs

From a user’s point of view the main functionality of a digital library is to offer
access to relevant information about subjects of interest. There are at least three
ways to obtain access to the requested information:

� through key-word or index search
� through semantic Information Retrieval
� through non-semantic Information Retrieval

The first technique is looking for all the documents that contain a key-word or
group of words. A number of experiments were made [3] with in-depth content,
which revealed that this kind of search is computer intensive and it requires high
performance computing infrastructures. Experiments showed that using GRID
structures the search time may be reduced significantly until an acceptable level.
More efficient techniques use index searching on metadata. This kind of search is
faster and it can benefit from traditional database query functionalities. But in
many cases the quality of the result depends very much on the ability of the user to
express in a few words the essence of his quest. Synonym words may not be con-
sidered relevant or words with different meanings in different context may mis-
lead the search. Therefore semantic search techniques try to solve this problem
through context-aware and semantic-aware retrieval methods. Semantic web
documents (SWD) are currently written in RDF (Resource Description Frame-
work) or OWL(Web Ontology Language) and they contain semantic annotations
and references to other SWDs. Semantic search engines are customized for such
SWDs, especially for ontology, and they take advantage of these semantic annota-
tions.

Non-semantic algorithms are alternatives for higher quality results. The idea is
to make a search in the content of the digital documents (instead of catalogue) and
to find statistical similarities between them. The user may give a document that
best describes its interest and the system responds with other similar documents.
This research was focused on two approaches: the Naive Bayes Algorithm [9] and
the Topic-Based Vector Space Model Algorithm (TVSM) [10]. The first tech-
nique was used to classify unlabeled data using training documents while with the
second technique the closest domain class for given documents was determined
using vector spaces.

The following paragraphs contain a brief description of these algorithms and
their interaction with the proposed system.

The Naive Bayes algorithm, being a learning algorithm has its foundations in
the domain of artificial intelligence. The following equation represents the prob-

86 Towards a digital content management system

ability model, where the numerator is the product between the prior class probabil-
ity and the likelihood probability, meanwhile the denominator is the probability of
the training data:

),...,(
)|,...,()(),...,|(

1

1
1

n

n
n FFp

CFFpCpFFCp � . (1)

where : C – document to be classified
 Fi – a training document

The learning task is to estimate the parameters of a generative model (the nu-
merator of the fraction) using labeled training data only. The parameters of a
generative model can be represented as collections of calculated word probabili-
ties.

In the next step the estimated parameters are used to classify new documents
based on their similarity with the given classes. The construction of a classifier
(U) using a probability model is presented below:

� ���� jjjUV VaPVpU
j

|)(maxarg . (2)

In the above equation � �
se

pseVaP jj �
�

�
*| represents the probability of ai,

an attribute of the document , to be part of the model Vj; e is the number of exam-
ples for which U = Vj, s is the equivalent sample size and p is a prior estimate of
U. A more detailed description of this algorithm can be found in [10,11].
In order to applying the Naive Bayes algorithm, a limited number of labeled ex-
amples were provided. Unlabeled documents were used to augment the available
labeled documents. The introduced weighting factor dynamically adjusts the
strength of unlabeled data. Although the Naïve Bayes algorithm considers words
independent of their context the search results are reasonably good.

This method can be easily implemented on a Grid infrastructure obtaining nota-
ble performances regarding processing time, space distribution, response time and
the identification of new documents.

The Topic-Based Vector Space Model [11] (TVSM) is a new vector-based ap-
proach for document classification. The approach does not assume independence
between terms and it is flexible regarding the specification of term similarities.
This model uses specific terms like stop-words, stemming and thesaurus.

A Stopword-list contains words, which are assumed to have no impact on the
meaning of a document. Such a list usually contains words like "the", "is", "of",
"a", etc. During preprocessing all words matching the Stopword-list are removed
from the document.

Thesaurus Substitution is defined as the replacement of different synonymous
words by one leading word. For example the synonyms "application" and "pro-

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 87

gram" can be replaced by the leading synonym "software". The leading synonym
is usually defined in an arbitrarily manner.

The term Stemming stands for the reduction of word forms e.g. “software",
"networks" to word stems e.g. “soft”,”net” (also known as Strong-Stemming) or to
basic word forms e.g. "software”,” network" (also known as Weak-Stemming).

First a user defines a profile that associate a set of documents to predefined
classes. The rest of the documents are classified by adopting the classification of
the most similar documents. The newly classified documents are added to the pro-
file. Figure 3 shows a possible representation of the vector space. Each axis inter-
cept of this vector space may have only positive values (including zero) and repre-
sents an elementary topic (e.g. sports, computer, music).

Fig. 3 TVSM vector space
Although the application of TVSM on given documents has real advantages

over other classification methods, it requires an amount of interaction with the
user. The enhanced TVSM algorithm proposed and tested in this paper reduces the
user involvement (interaction) through an automatic vector weight computation.
According to the proposed method the weight of a vector is computed as a func-
tion of its appearance frequency in the processed documents (e.g. a term with
higher frequency in documents will get a higher weight).

7 Experimental Results

In order to evaluate the efficiency of the proposed model an in-depth word pattern
search was made. This was implemented on a Condor GRID Framework. The
goal was to build a digital content library with enhanced search facilities.

Most digital libraries offer very good search engines with real-time response,
when the search is made on catalogs or on metadata. But, if the search must be
made in all the documents of the library the execution time may exceed a few
hours or even days, making the search un-feasible. In order to reduce the response
time for in-depth search procedures a GRID solution was adopted.

88 Towards a digital content management system

Comparisons were made between search time made on a single computer and
on a GRID architecture, with variable number of executor nodes. The test scenario
was as follows:

� a set of computers were organized as a GRID infrastructure using the
Condor middleware; the computers were connected through an Ethernet
LAN (100Mbs)

� the content of the digital library was made of document files having
different formats: TXT, DOC and PDF.

� the library had 1000 files with variable length, from 1KB to 1MB
� the search procedure was looking for a set of words in a frame with

predefined length (the distance between any two words found in the file
should not exceed the length of the frame)

� in some experiments all the files were in a single node and in others a
random distribution of files was used

Figure 4 shows the relation between the execution time of the search procedure
and the number of Executor nodes. The total execution time of a search is a sum
between the scheduling and communication time (the time needed to distribute the
tasks and the data files) and the search time (processor time). Two cases were
considered:

� case 1 – the files are distributed between nodes
� case 2 – all the files are stored in a single computer

Fig. 4 The relation between the execution time and number of executor nodes

It can be seen that the search time is decreasing with the number of processors
but the scheduling and communication time is increasing. However the total
execution time is decreasing with the number of nodes. It is also interesting to
observe that in the second case the communication time is higher because a
greater amount of data has to be transferred through the network.

The graphics shows that in the above specified scenario if more than 5 GRID-
nodes are used the results don’t improve significantly. Probably in another
scenario where the processing time has a more weight in the total time the optimal
number of GRID-nodes would be higher. For instance in case of pattern search in

Gh. Sebestyén-Pál, D. Banciu, T. Bálint, B. Moscaliuc, Á. Sebestyén-Pál 89

multimedia files (audio or video) the execution time is significantly higher and the
need for more nodes is evident.

The experiment showed that the search time depends significantly with the
format of the files. For the same file length the PDF files requires 4 to 5 times
more processor time than a TXT file. The search time for DOC files was
approximately twice the time of a TXT file. Figure 5 shows the search time related
to the dimension and type of the files. It can be seen that the search time varies for
the same file dimension, but a proportional average time increase is obtained with
the files’ length. The search time does not include the scheduling and
communication time.

An important drawback of the Condor implementation and of many other GRID
implementations (e.g. Globus, EGEE) is the fact that the search tasks are

have a bigger involvement during the search process some less useful searches
could be stopped in an earlier phase.

Fig. 5 The search times for TXT, DOC and PDF files

8 Conclusions

The paper presents a new vision on the design and implementation of a digital li-
brary management system. It defines the basic requirements, specifies its main
functionalities and gives a general model of such a system. The proposed model is
based on a technical and scientific document ontology used to obtain more rele-
vant search results taking into account the relationships among the concepts. Some
search protocols are outlined to facilitate communication between digital libraries.
The presented architecture is based on Grid technology. This technology helps to

performed in a batch style and not in an interactive mode. Maybe if the user would

90 Towards a digital content management system

implement data- and computationally-intensive tasks. The paper also gives a short
description of the two classification algorithms used in the experiments.

Acknowledgments
The present paper presents the results of a national research project called SINRED funded
by the Romanian Ministry of Education and Research through the Excellency Program.

References

1. “DELOS Digital library architecture (WP1) - Cluster Objectives.”, 2004
2. H. Suleman, Analysis and Evaluation of Service Oriented Architectures for

Digital Libraries, Digital Library Architectures: Peer-to-Peer, Grid, and
Service-Orientation - Pre-proceedings of the Sixth Thematic Workshop of
the EU Network of Excellence DELOS, 2004, pag. 165-176

3. Gh. Sebestyen, D. Banciu, T. Balint, A. Hangan, "Digital Content
Management on GRID Structures", ICCP 2007 IEEE International
Conference on Intelligent Computer Communication and Processing, Cluj-
Napoca, 2007, pag. 259-262

4. C. Lagoze and H. V. de Sompel, “The open archives initiative protocol for
metadata harvesting.”,
http://www.openarchives.org/OAI/openarchivesprotocol.html, 2002

5. Hao Ding, A Semantic Search Framework in Peer-to-Peer Based Digital
Libraries, ISBN 82-471-8153-3 (electronic), 2006

6. “Dublin core medata initiative”, http://www.dublincore.org, 1995
7. Ian Foster, What is the Grid? A Three Point Checklist, 2002
8. Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid:

Enabling Scalable Virtual Organizations, International Journal of Super-
computer Applications, 15(3), Sage Publications, 2001, USA.

9. McCallum A., Nigam K.: A comparison of event models for naive Bayes text
classification, In AAAI-98 Workshop on Learning for Text Categorization,
AAAI Press, 1998

10. Nigam K. , McCallum A. , Thrun S., Mitchell T.: Text Classification from
Labeled and Unlabeled Documents using EM, Machine Learning, Kluwer
Academic Publishers, 1999

11. Yang Y., Pederson J. O.: Feature selection in statistical learning of text
categorization, In Proceedings of the Fourteenth International Conference
ICML-97 1997

12. Becker J., Kuropka D.: Topic-based Vector Space Model,Proceedings of the
6th International Conference on Business Information Systems, 2003

13. EGEE – Enabling Grids for E-sciencE, http://public.eu-egee.org/
14. Diligent deliverables, http://diligent-training.isti.cnr.it/
15. BRICKS Project, http://www.brickscommunity.org/
16. OpenDLib Project, http://www.opendlib.com/

III
GRID RESOURCE MANAGEMENT AND
SCHEDULING

Fair Execution Time Estimation
Scheduling in Computational Grids

Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Abstract We propose a fair scheduling algorithm for Computational Grids,
called Fair Execution Time Estimation (FETE) algorithm. FETE assigns a
task to the computation resource that minimizes what we call its fair execu-
tion time estimation. The fair execution time of a task on a certain resource
is an estimation of the time by which a task will be executed on the re-
source, assuming it gets a fair share of the resource’s computational power.
Though space-shared scheduling is used in practice, the estimates of the fair
execution times are obtained assuming that a time-sharing discipline is used.
We experimentally evaluate the proposed algorithm and observe that it out-
performs other known scheduling algorithms. We also propose a version of
FETE, called Simple FETE (SFETE), which requires no a-priori knowledge
of the tasks workload and in most cases has similar performance to that of
FETE.

Key words: grids, scheduling, fairness, task workload

Eleni Dafouli
Department of Computer Engineering and Informatics, University of Patras,
e-mail: dafouli@ceid.upatras.gr

Panagiotis Kokkinos, Emmanouel A. Varvarigos
Research Academic Computer Technology Institute, Patras, Greece,
e-mail: kokkinop, manos @ceid.upatras.gr

94 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

1 Introduction

Grids consist of geographically distributed and heterogeneous communica-
tion, computation and storage resources that may belong to different ad-
ministrative domains, but can be shared among users. Since the sharing of
resources is the ”raison d’ etre” of Grids, fairness is a concept that is inherent
in Grid scheduling, and has been previously ignored. Fairness can be defined
in a number of different ways, but an intuitive notion of fairness is that a task
submitted to the Grid, is entitled to as much use of the resources as any other
task. When the Grid serves different classes of users (e.g., users willing to pay
different prices for the service they receive) the notion of fairness depends on
the class of the user, with users belonging to the same class having ”equal”
access to the resources.

In this work we propose a fair scheduling algorithm for Computational
Grids, which we call the Fair Execution Time Estimation (FETE) algorithm.
FETE assigns a task to the computation resource that minimizes what we
call its fair execution time estimation. This estimation is obtained assum-
ing that the task gets a fair share of the resource’s computational power.
Though space-shared scheduling is used in the actual resource, the estimates
of the fair execution times are found assuming time-sharing is used. We also
propose a version of FETE, called Simple FETE (SFETE), which is a good
approximation of FETE, and does not require a-priori knowledge (or esti-
mates) of the task workloads. FETE and SFETE can be implemented both
in a centralized and in distributed way. We perform an extensive set of ex-
periments using the GridSim [7] simulator and show that FETE outperforms
other known scheduling algorithms with respect to performance and fairness
related metrics. The improvements obtained by using FETE are particularly
important when the load in the Grid, in terms of tasks submitted, increases.
Finally, it is observed that the FETE and the SFETE algorithms give similar
results, and so in almost every case the latter version is preferable, since it
has no need for the a-priori knowledge of the task workloads. These results
strengthen our belief that SFETE can in fact be incorporated in a production
Grid Middleware.

The remainder of the paper is organized as follows. In Section 2 we report
on previous work. In Section 3 we describe the Grid environment used. In
Section 4 we present the Fair Execution Time Estimation (FETE) and in
Section 5 the Simple FETE (SFETE) scheduling algorithms. Performance
results are presented in Section 6. Finally, conclusions and directions for
future work are presented in Section 7.

Fair Execution Time Estimation Scheduling in Computational Grids 95

2 Previous Work

A number of scheduling algorithms have been proposed so far, both for single-
and for multi-processor systems, some of which have also been adapted for
use in the Grid environment. Lately a number of scheduling schemes that
are specific to Grids have also been proposed. [1][2][3][4][11] present central-
ized, hierarchical and distributed scheduling schemes for Grids. Most of the
scheduling algorithms proposed so far try to minimize the total average task
delay [3] and maximize resource utilization, while several other performance
metrics are used. In [8] and in [9] scheduling algorithms that support deadline
and budget constraints are proposed and implemented.

The fair scheduling of packets in Data networks is a concept quite well
studied [5][6]. On the other hand fair scheduling algorithms for Grids have
received relatively little attention until now. In [10] a fair packet-by-packet
algorithm for the joint allocation of processing and bandwidth resources is
proposed. In [12] game theory is used to prove that a strong community con-
trol is required to achieve acceptable performance in Grids, by comparing
centralized and distributed fair scheduling algorithms. In [13] the authors
propose a resource allocation scheme based on fair resource sharing in hier-
archical Virtual Organizations (VOs). Simulation results show that the pro-
posed scheme provides greater fairness than other schemes, as well as better
performance. In [14] three different fair scheduling algorithms are proposed
and evaluated in a centralized scheduling environment.

3 Grid Environment

We consider a Grid environment consisting of a number of users and a num-
ber of computation resources. By the term user we do not necessarily mean
an individual user, but also (and probably more appropriately) a Virtual Or-
ganization (VO), or a single application, using the Grid infrastructure. Also
a computation resource can be a cluster, a parallel computer or a Grid site.

Users generate atomic (undivisible and non-preemptable) tasks and ev-
ery task i has workload wi and non-critical deadline Di. By the term ”non-
critical” we mean that if the deadline expires, the corresponding task remains
in the system until completion, but it is recorded as a deadline miss. Upon
creating a new task, the user sends the task characteristics to the central
scheduler, in the form of a task request. The central scheduler works ”offline”
or ”online”. In the former case the central scheduler receives task requests
by several users and stores them in a local queue. Periodically the scheduler
orders the queued task requests (using an ordering policy) and assigns them
to resources (using an assignment policy). In the ”online” mode the central
scheduler assigns tasks to resources immediately after the arrival of the cor-
responding task requests. Each resource j contains a number CPUs, of total

96 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

computational capacity equal to Cj and uses a space-sharing policy. Tasks
are served by the CPUs of a resource based on the order they arrive to it. At
any time t there are Nj(t) tasks in resource’s j local queue or under execution
in its CPUs.

The FETE and Simple FETE algorithms can work both in ”offline” and
”online” mode. However, these algorithms are presented, in this paper, in
their ”offline” mode and evaluated along with other ”offline” algorithms.
Finally, the FETE and Simple FETE algorithms do not use the task deadlines
in their operation.

4 Fair Execution Time Estimation Algorithm

The Fair Execution Time Estimation (FETE) scheduling algorithm assigns
task i to resource j that provides the minimum fair execution time Xij . The
fair execution time Xij is an estimation of the time required for task i to
be executed on resource j, assuming it gets a fair share of the resource’s
computational power. By fair share we mean that each time t the task gets
a portion:

1
Nj(t)+1 ,

of resource’s j computational capacity Cj . That is, the estimates of the fair ex-
ecution times are obtained assuming a time-sharing discipline, though space-
shared scheduling is used in the actual resource. The parameter Nj(t) is the
total number of tasks already assigned (queued or executed) to resource j at
the time t the assignment decision is made. The fair share of the resource’s
capacity each task gets changes with time, since Nj(t) also changes with time,
increasing by 1 every time a new task is assigned to resource j and decreasing
by 1 each time a task completes service at resource j. For this reason, during
the calculation of the fair execution time Xij of task i on resource j, the fair
execution time estimations of the tasks already assigned to resource j should
also be taken into consideration.

In the example of Figure 1, we present two resources A and B that have the
same computation capacity. At time 0 both resources have the same number
of tasks N assigned to them, however the tasks assigned to resource B have
smaller workloads. The first task completes its execution in resource A at
time tA1 , while in resource B at tB1 , and tA1 > tB1 . Similarly, for the second
task we have tA2 > tB2 , and so on. During the time periods [0, tA] and [0, tB],
we assume that there are no new arrivals of tasks, so the last task, in both
resources, utilizes the whole computational capacity of the corresponding
resource. The last task in resource A finishes its execution at time tA, while
in resource B at time tB , where tA > tB . These times, tA and tB , are also
the fair execution time estimations of the corresponding tasks. We see that
the fair execution time of a task depends not only on its workload, resource

Fair Execution Time Estimation Scheduling in Computational Grids 97

capacity and number of tasks assigned to resource, but also on the workloads
of the other tasks.

Fig. 1 Fair execution time estimation example.

For the calculation of the fair execution time Xij of task i on resource j, we
consider the fair execution time estimations of the tasks already assigned to
resource j. However, in this calculation it is not possible to also consider tasks
that may be assigned to the resource in the future, which would change the
fair share of existing tasks. he fair execution time estimations of the tasks are
calculated only once and are not re-estimated when new tasks arrive at the
resource. So, the calculation of the fair execution time of task i on resource
j is just an estimate and not the actual time that the task would complete
its execution, even if it were executed using an ideal time-sharing (processor
sharing) scheme.

The pseudocode of the centralized and ”offline” implementation of FETE
is presented in Algorithm 1. We assume that at the time a task arrives at
the resource, there are N tasks assigned to it, having fair execution times tn,
n = 1, · · · , N . Without loss of generality we also assume that tn−1 > tn for
all n. A task i has workload equal to wi and its remaining workload (defined
in Algorithm 1) is denoted by ŵi. In the end FETE algorithm assigns task i
to resource j that provides the minimum fair execution time estimation Xij .

5 Simple Fair Execution Time Estimation Algorithm

The FETE algorithm requires the a-priori knowledge of the task workloads for
obtaining the fair execution time estimations. However, the task workloads,
in practice, are often not known and may be hard to estimate. For this reason

98 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Algorithm 1 Fair Execution Time Estimation - FETE
1: for each task i queued in the scheduler’s ordered list do
2: for each resource j in the Grid do
3: Set ŵi = wi

4: Estimate the fair execution time Xij :
5: Set t = 0, n = N and Xij = 0
6: Estimate task’s i temp fair execution time Xij assuming it gets computational

capacity
Cj

Nj(t)+1
on resource j: Xij = ŵi · Nj(t)+1

Cj

7: if Xij < tn then
8: Xij = Xij + t
9: else

10: ŵi = ŵi − Cj

Nj(t)+1
· (tn − t)

11: Xij = Xij + tn
12: Set t = tn and n = n − 1
13: Goto(6)
14: end if
15: end for
16: Assign task i to resource j that gives the minimum fair execution time Xij

17: Nj(t) = Nj(t) + 1
18: Send the scheduling decision to the user of task i
19: end for

we propose a version of FETE, called Simple FETE (SFETE), which requires
no a-priori knowledge of the tasks workload.

The SFETE assigns task i to resource j that provides the minimum simple
fair execution time X̂ij . The simple fair execution time X̂ij is an estimation
of the time by which task i will be executed on resource j, assuming it gets a
fair share of the resource’s computational power, without taking into account
the fair execution times of the other tasks already assigned to the resource
(Figure 2). So, when the SFETE is employed in the example of Figure 1, then
the simple fair execution time estimations of the tasks are equal (tA = tB).

Fig. 2 Simple execution time estimation example.

The simple fair execution time X̂ij of task i on resource j, is defined as

Fair Execution Time Estimation Scheduling in Computational Grids 99

X̂ij =
Nj+1

Cj
,

where Cj is the computational capacity of resource j and Nj is the number
of tasks in the resource’s queue, including the one being processed. It is once
again important to note that the calculation of the simple fair execution
time X̂ij of task i on resource j is only an estimate. New tasks may be sent
to resource j, or existing tasks may complete their execution. This way the
fair share of the computation capacity of the tasks already assigned to the
resource changes, however their simple fair execution time estimations are
not re-estimated.

The pseudocode of the centralized and ”offline” implementation of the
SFETE algorithm is presented in Algorithm 2.

Algorithm 2 Simple Fair Execution Time Estimation - SFETE
1: for each task i queued in the scheduler’s ordered list do
2: for each resource j in the Grid do

3: Estimate the fair execution time: X̂ij =
Nj+1

Cj

4: end for
5: Assign task i to resource j that gives the minimum simple fair execution time X̂ij

6: Nj = Nj + 1
7: Send the scheduling decision to the user of task i
8: end for

6 Performance Results

6.1 Simulation Environment

The proposed FETE and SFETE scheduling algorithms, along with other al-
gorithms used for comparison (Table 1) were implemented and evaluated in
the GridSim [7] simulator. The scheduling algorithms were implemented in a
centralized and ”offline” manner. FETE and Simple FETE algorithms were
compared against some well-known algorithms presented in . In the Earliest
Deadline First (EDF) ordering policy the task with the most imminent dead-
line is scheduled first, while in the Least Length First (LLF) ordering policy,
the task with the smallest workload is given priority. The Earliest Comple-
tion Time (ECT) assignment policy, assigns a task to the resource where the
task will finish its execution earlier. Also, the FETE and the simple FETE
algorithms use the First Come First Serve (FCFS) ordering policy, where
tasks are processed (assigned to resources) in the order they arrive to the
scheduler.

All the scheduling algorithms were evaluated in a Uniform resource sce-
nario, in which all resources have the same characteristics (number of CPU

100 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

Table 1 The scheduling algorithms compared with the FETE and the SFETE.

Algorithm Ordering policy Assignment policy

FCFS/ECT First Come First Served (FCFS) Earliest Completion Time (ECT)
EDF/ECT Earliest Deadline First (EDF) Earliest Completion Time (ECT)
LLF/ECT Least Length First (LLF) Earliest Completion Time (ECT)

and capacity) and in a non-Uniform resource scenario, in which the resources
have different characteristics. The total computational capacity of the re-
sources in both scenarios was the same. The tasks characteristics are defined
probabilistically and the users task submission rate follows an exponential
distribution, whose mean takes the following values: 12, 20, 25, 33, 40, 50,
55, 60, 65, 70 tasks/sec. Finally, in our simulations we assume that the com-
munication delays are negligible compared to the execution time of the tasks,
which is the case in Computational Grids.

6.2 Simulation Metrics

The algorithms are evaluated using the following metrics:

• Average Task Delay: The average of the delays of the tasks (task Delay =
task Finish Time - task Creation Time).

• Task Delay Standard Deviation: The standard deviation of the task delays.
• Average Excess Time: The average time by which a task misses its non-

critical deadline (task Excess Time = task Finish Time - task Deadline
Expiration).

• Excess Time Standard Deviation: The standard deviation of the time by
which the tasks miss their non-critical deadlines.

• Deadlines Missed: The number of tasks that miss their non-critical dead-
lines.

6.3 Simulation Results

For all the scheduling algorithms examined the average task delay increases as
a function of the task submission rate (Figure 3). Specifically, for light load all
the algorithms have similar behavior, however, when the task submission rate
increases the FETE algorithms (FETE and SFETE) achieve smaller average
task delay. This happens because the proposed algorithms treat the tasks
and utilize the resources in a more fair manner, something that becomes
more evident as the task load increases. We also observe that the FETE
algorithms result in smaller task delay standard deviation than the other

Fair Execution Time Estimation Scheduling in Computational Grids 101

algorithms (Table 1). These results where confirmed both for the Uniform
and for the non-Uniform resource scenario.

Fig. 3 Average task delay versus task submission rate in the Uniform resource scenario.

Figure 4 illustrates that the average excess time increases as a function
of the task submission rate, for both resource scenarios. In the Uniform re-
source scenario (Figure 4.a) the increase is smaller when the FETE algorithms
(FETE and SFETE) are used, meaning that the times by which the tasks
miss their deadlines are also smaller. In the non-Uniform resource scenario
(Figure 4.b) and for small task submission rates, the SFETE algorithm’s
performance is worse than that of the FETE and of the other algorithms ex-
amined. Next, as the task submission rate increases SFETE overpowers the
other algorithms, whose performance deteriorates, while SFETE’s remains
almost constant.

SFETE does not have any knowledge of the task workloads and indirectly
assumes a constant value for all the queued tasks fair execution times. On
the other hand the FETE algorithm estimates more accurately the queued
tasks fair execution times, whose values, however, are quite different due
to the non-uniformity of the resources. When the submission rate increases,
the number of tasks in the Grid also increases and the queued tasks fair
execution times (estimated by FETE) approach on average a constant value.
This is in accordance with the Law of Large Numbers and it is confirmed
by Figure 4.b. Specifically, in Figure 4.b the average excess time achieved
by the SFETE is almost constant and only increases in the very end when
the Grid environment is almost saturated by the large number of tasks. On
the other hand the average excess time of the FETE increases reaching that

102 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

(a)

(b)

Fig. 4 Average excess time versus task submission rate, (a) in the Uniform resource
scenario, (b) in the Non-Uniform resource scenario.

Fair Execution Time Estimation Scheduling in Computational Grids 103

of the SFETE. Similar results were observed for the excess time standard
deviation, for both resource scenarios.

Fig. 5 Deadlines missed versus the task submission rate, in the Uniform resource scenario.

Finally, our performance results showed (Figure 5) that fewer tasks miss
their deadlines when they are scheduled using the FETE algorithms than
when they are scheduled with other algorithms. This is due to the fact that
resources are utilized more uniformly, something that becomes more evident
as the task load increases.

7 Conclusions

In this work we proposed two fair scheduling algorithms for Computational
Grids, called Fair Execution Time Estimation (FETE) and Simple Fair
Execution Time Estimation (SFETE). The FETE algorithms (FETE and
SFETE) assign a task to the resource that minimizes what we call its fair
execution time estimation. The fair execution time of a task on a certain
resource is an estimation of the time by which a task will be executed on the
resource, assuming it gets a fair share of the resource’s computational power.
The FETE algorithms where evaluated and compared against a number of
known scheduling algorithms. The results indicate that in most cases and
especially at large task submission rates, the FETE algorithms have simi-
lar performance and both outperform the other algorithms considered, with

104 Eleni Dafouli, Panagiotis Kokkinos, Emmanouel A. Varvarigos

respect to performance and fairness related metrics. In addition, SFETE is
more realistic, since it does not need the a-priori knowledge of task workload.

Based on these facts, we implemented SFETE in a production Grid Mid-
dleware and specifically in gLite [15]. Currently we are in the process of eval-
uating the efficiency and the scalability of our algorithm against the other,
relative simple, scheduling algorithms implemented in gLite, by utilizing a
real Grid Testbed.

References

1. I. Ahmad, Y.-K. Kwok, M.-Y. Wu, K. Li, Experimental Performance Evaluation of
Job Scheduling and Processor Allocation Algorithms for Grid Computing on Meta-
computers, IPDPS, 2004.

2. V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed job schedul-
ing on computational grids using multiple simultaneous requests, HPDC, 2002.

3. Y. Cardinale, H. Casanova, An evaluation of Job Scheduling Strategies for Divisible
Loads on Grid Platforms, HPC&S, 2006.

4. T. Braun, et al., A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems, JPDC, 2001.

5. A. Parekh, R. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the single-node case, IEEE/ACM ToN, 1993.

6. A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queuing algorithm,
SIGCOMM, 1989.

7. R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of Dis-
tributed Resource Management and Scheduling for Grid Computing, Concurrency and
Computation: Practice and Experience (CCPE), 2002.

8. R. Buyya, J. Giddy, D. Abramson, An evaluation of economy-based resource trading
and scheduling on computational power grids for parameter sweep applications, Active
Middleware Services, 2000.

9. R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling Parameter Sweep
Applications on Global Grids: A Deadline and Budget Constrained Cost-Time Opti-
mization Algorithm, Journal of SPE, 2005.

10. Y. Zhou, H. Sethu, On Achieving Fairness in the Joint Allocation of Processing and
Bandwidth Resources, IWQoS, 2003.

11. S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin, N. Kuzjurin, A.
Pospelov, A. Shokurov, Comparison of Scheduling Heuristics for Grid Resource Broker,
ENC, 2004.

12. K. Rzadca, D. Trystram, A. Wierzbicki, Fair Game-Theoretic Resource Management
in Dedicated Grids, CCGrid, 2007.

13. K. H. Kim, R. Buyya, Fair Resource Sharing in Hierarchical Virtual Organizations for
Global Grids, Grid Computing, 2007.

14. N. Doulamis, E. Varvarigos, T. Varvarigou, Fair Scheduling Algorithms in Grids, IEEE
TPDS, 2007.

15. http://glite.web.cern.ch/glite/

Multiprocessor Task Scheduling using a new Prioritizing
Genetic Algorithm based on number of Task Children

Marjan Abdeyazdan,1 Amir Masoud Rahmani

Abstract Due to optimal use of processors as well as spending less time, the task
scheduling in multiprocessor systems is of great importance. This is one of the
NP_hard problems and achieving the optimal schedule or finding the minimum
schedule length, using the dynamic algorithm and back-tracking programming, would
be time-consuming. Therefore, heuristic methods like genetic algorithms are suitable
methods to schedule tasks in a multiprocessor system. In this paper, a new genetic
algorithm is presented whose priority of tasks’ execution is based on the number of
their children. The results show that our developed algorithm finds the near-optimal
schedule in a reasonable computation time, compared to other heuristics.

1 Introduction

A big program could not have been performed on a single processor in a reasonable
time. Therefore, it has to be divided into several tasks and the schedule length should
be minimized applying appropriate scheduling in a multiprocessor system.

is used since each task is represented by its corresponding node in this graph.
Presence of an edge from task ti to task tj means that while task ti is not finished, task
tj can not start execution. The objective of scheduling a task graph onto a
multiprocessor system is to allocate n tasks to m processors, as the priority task
relations are observed and the completing time of the final task is reduced to
minimum. Simply, if two tasks are scheduled on two different processors, the
communication cost would be zero.
Scheduling in a multiprocessor system is an NP_Hard problem [1]. In traditional and
dynamic methods, obtaining the best schedule is too time-consuming and often
random execution of tasks needs less time. Then, in heuristic methods the best
schedule is not necessarily obtained in a reasonable time; however the obtained
solution is close to the best one. Many heuristic methods have been studied such as:

1Marjan Abdeyazdan
Islamic Azad Universiy, Mahshahr branch, Iran. e-mail: marjanabdeyazdan69@yahoo.com

Amir Masoud Rahmani
Computer Engineering Department, Islamic Azad Universiy, Science and Research branch, Tehran,
Iran. e-mail: rahmani@sr.iau.ac.ir

For mathematical modeling of task scheduling problem, Direct Acyclic Graph (DAG)

106 Marjan Abdeyazdan, Amir Masoud Rahmani

min–min, max-min, duplex, MCT (Minimum Completion Time), MET (Minimum
Execution Time) [2], SA (Simulated Annealing) [3, 4], tabu search [5]. One of the
best heuristic methods on task scheduling in multiprocessor systems is genetic
algorithm [3, 6, 7, 8, 9, 11]. In this paper, a new genetic algorithm is introduced which
executes tasks with respect to their priorities, based on the number of their children.
The paper is structured as followed. Section 2 presents priority-based task scheduling.
In Section 3 a new method is explained that suggests prioritized tasks based on the
number of their children. Section 4 elaborates on simulation and its result and Section
5 summarizes the achievements.

2 Priority-based task scheduling

2.1 Schedule length

The goal in scheduling problem is to minimize the schedule length. The time that the
final task is completed on a processor is called the finishing time of that processor.
The maximum finishing time between m processors is called TFT (Total Finishing
Time) of the schedule or schedule length. TFT is calculated by Equation (1).

)1(TFT= Max {Finishing Time of Processorj)}; for 1≤ j ≤ m

2.2 Prioritizing tasks based on their height

One of the common scheduling methods is prioritizing tasks based on their height [9]
and it is as follows:
In a task graph, if there is a sequence of directed edges from ti to tj, then ti is an
ancestor of tj and tj is a child of ti. If PRED(ti) is a set of preceded tasks of ti, then the
height of a task would be calculated as Equation (2) [9].

)2(
⎪
⎩

⎪
⎨

⎧

∈

+

=

=

)(

)(max1

)(0

)(

ij

j

i

i

tPREDt

otherwisetheight

tPREDIf

theight

φ

In effect, the height function represents special precedence relations between tasks. If
ti is an ancestor of tj, then ti has to be executed before tj and height(ti) < height(tj). If
there is not any sequence of edges between two tasks, then there would be no
precedence relation between them and they could be executed in any arbitrary order.
A schedule producing algorithm based on the task height is as follows:

1. Put tasks in a queue in ascending order according to their height.
2. Produce a random number r between 1 and m (m is the number of the

processors).
3. Select the first task from the queue and allocate it to rth processor and then

delete it.

Multiprocessor Task Scheduling using a new Prioritizing Genetic Algorithm 107

4. Repeat steps 2 and 3 until the queue is empty.
As far as the relations of task graph in Figure 1 are concerned, tasks are arranged with
Table 1 based on their height and are scheduled on three processors by employing the
above mentioned algorithm. A schedule with respect to Table 1 and Table 2
(execution time of tasks) is presented in Figure 2.

Figure 1 A task graph

Table 1 Height of tasks in Figure 1
t 15 t14 t13 t12 t 11 t 10 t9 t8 t7 t6 t 5 t4 t3 t2 t1 t0
5 4 4 4 3 3 3 3 3 2 2 2 2 1 1 0

Table 2 Execution time of tasks
t 15 t14 t13 t12 t 11 t 10 t9 t8 t7 t6 t 5 t4 t3 t2 t1 t0
2 15 10 8 5 5 11 7 9 6 3 10 1 4 2 3

P1 t0 t3 t9 t13 t15

P2 t1 t2 t5 t7 t12

P3 t4 t6 t8 t10 t11 t14

 0 3 5 6 9 12 13 15 21 24 28 32 33 34 36 38 53

Figure 2 a schedule based on task height

2.3 Prioritizing tasks based on the number of their children

Our method of scheduling prioritizing is to assign tasks to each processor based on a
higher number of their children. It means a task with more children would be

t0

t1 t2

t3 t4 t5 t6

t7 t8 t9 t10 t11

t12 t13 t14

t15

108 Marjan Abdeyazdan, Amir Masoud Rahmani

scheduled earlier. In consideration of any task graph, the Number of Children (NC)
for each task is calculated by Equation (3).

(3)
⎪
⎪
⎩

⎪
⎪
⎨

⎧

+= ∑
=

=

i

j

ttaskfromedgesoutgoingofnumberj

j
j

i

i

tfromedgeincoming

directthehastastNC

childnohastif

tNC
i

;))(1(

;0

)(
1

The NC function represents special precedence relations between tasks. If tj is a child
of ti, then ti has to be executed before tj and NC(ti) > NC(tj). On the other hand,
according to Equation (3), a task with more children is impossible to be a child of a
task with fewer children; hence, its execution does not have to do with the completion
of task with fewer children.
Logically, the earlier execution of a task with more children is better than a task with
the lower height, as the completion of a task with more children - however with
higher height - would raise the possibility of execution of all its children. For
example, in Figure 1 there is task t10 with two children and height value of 4
compared with task t3 with one child and height value of 3.
A schedule producing algorithm based on the number of task children is as follows:

1. Put tasks in a queue based on their children in descending order.
2. Separate tasks with the equal NC in a single group and perform steps 3 and 4

for all groups in order of higher NC until every group is empty.
3. Select a task from a group randomly, and then delete it from the group.
4. Allocate that task to one of the m processors based on EST (Earliest Start

Time) method, in a manner that starting time of that task on that processor is
less than other processors.

Finally, all tasks are assigned to the processors (completeness) and each task is
allocated only once (uniqueness). Our suggested prioritizing algorithm is illustrated
with an example with attention to the task graph in Figure 1. The NC of each task is
presented in Table 3 and the tasks are arranged in descending order based on their NC
in Table 4. The EST for each task is shown in Table 5. By applying the above
algorithm, a schedule would be produced as shown in Figure 3.

Table 3 Relevant NC for each task of Figure 1
t 15 t14 t13 t12 t 11 t 10 t9 t8 t7 t6 t 5 t4 t3 t2 t1 T0

0 1 0 0 0 2 0 2 0 5 3 4 1 10 6 15

Table 4 Ordering tasks based on their NC
t 15 t13 t12 t 11 t 9 t7 t14 t 3 t10 t 8 t 5 t 4 t 6 t 1 t 2 t 0

0 0 0 0 0 0 1 1 2 2 3 4 5 6 10 15

Table 5 EST for tasks
t 15 t14 t13 t12 t 11 t 10 t9 t8 t7 T6 t 5 t4 t3 t2 t1 t0

33 18 22 22 13 13 13 15 15 7 7 5 5 3 3 0

Multiprocessor Task Scheduling using a new Prioritizing Genetic Algorithm 109

P1 t0 t6 t10 t3 t13 t9

P2 t2 t5 t8 t15 t11 t7

P3 t1 t4 t14 t12

 0 3 5 7 10 13 15 18 19 22 32 33 35 40 41 43 49

Figure 3 A schedule based on tasks’ NC

3 The proposed algorithm

The genetic algorithm (GA) was developed by John Holland in 1975 [10] which is a
search technique based on the principles of genetics and natural selection to find an
optimal or sub-optimal solution. In GA, the term chromosome typically refers to a
candidate solution to a problem. GA allows a population composed of many
chromosomes to evolve under specified selection rules to a state that maximizes the
fitness (i.e., minimizes the cost function). GA is a method for moving from initial
population of chromosomes to a new population by using a kind of genetic operators
like crossover and mutation. Each chromosome consists of genes. The selection
operator chooses those chromosomes in the population that will be allowed to
reproduce new generation. Crossover exchanges subparts of two chromosomes and
mutation randomly changes the values of some genes in the chromosome.
The new genetic algorithm introduced in this paper has following six phases:

3.1 The fitness value and initial population producing

The cost function of each schedule (i.e., the fitness of each chromosome) is selected
as schedule length or TFT based on Equation (1). By repetition of the schedule
producing algorithm based on the number of tasks children, the initial population will
be produced.

3.2 Selection

The selection phase has two steps:
1) Applying a roulette wheel to select two chromosomes:

After ascending ordering of chromosomes based on their fitness, a roulette wheel
series is constructed based on their fitness [1]. Hence, the chromosomes with lower
TFT (best fitness), occupy more slots in the roulette wheel. In this way the possibility
of selecting chromosomes with best fitness is higher. Then two chromosomes will be
selected.

2) Applying a roulette wheel for selecting a task:
A roulette wheel is constructed for tasks based on their NC. A task with more children
has more chance to be selected compared to a task with fewer ones.
The genetic operators like crossover, mutation and load balancing will be applied on
the current generation to produce the next generation.

110 Marjan Abdeyazdan, Amir Masoud Rahmani

3.3 Crossover

A random number is produced between zero and one and if it is larger than the
crossover rate or is equal to it, the crossover is done in the following way:

1) Two selected chromosomes in the selection phase are duplicated and the
following operation is done on them to generate two new chromosomes.

2) All tasks would be chosen which have NC lower or equal to the NC of the
selected task in the selection phase. For every processor of the first
chromosome, the chosen tasks are exchanged with the other tasks in the peer
processor in the second chromosome.

For example, the chromosomes C1 and C2 and the task t14 with NC value of 1 have
been selected. During the crossover, the tasks which have NC lower or equal to 1 e.g.
tasks {t3, t14, t7, t9, t11, t12, t13, t15} are selected in both chromosomes and then are
exchanged on their relevant peer processors as shown in Figure 4.

 C1 (TFT=49) new chromosome (TFT=40)
t13 t9t10 t6 t0 P1 t9 t13 t3t10 t6 t0 P1

t12 t7 t3t8 t5 t2 P2 t7 t11 t15t8 t5 t2 P2

t11 t15 t14t4 t1 P3 t12 t14t4 t1 P3

 C2 TFT=43) new chromosome (TFT=49)
t9 t13 t3t8 t6 t0 P1 t13 t9t8 t6 t0 P1

t7 t11 t15t10 t5 t2 P2 t12 t7 t3t10 t5 t2 P2

 t12 t14t4 t1 P3 t11 t15 t14t4 t1 P3

Figure 4 Applying crossover on C1 and C2 and producing two new chromosomes

3.4 Mutation

A random number between zero and one is produced and if it is larger than the
mutation rate or is equal to it, the mutation operation is done in the following way:

1) Two selected chromosomes in the selection phase are duplicated and then the
following operation is done separately on them.

2) For the first chromosome, the selected task in the selected phase is
exchanged with another task on different processor which has NC equal to it.
The same operation is done on the second selected chromosome.

For example, the chromosome C1 and the task t13 with NC value of zero are selected
for the mutation. Another task from chromosome C1 in different processor that has the
NC equal to t3 e.g. t15 is selected and two tasks t13 and t15 are exchanged as shown in
Figure 5.
Lemma 1. Since applying the mutation or crossover operators implies the uniqueness
and completeness requirements have been met, after applying such operators, no task
is missed and no task is added to the new chromosome. However, as all operators are
based on tasks’ NC, the tasks’ execution precedence is met too.

Multiprocessor Task Scheduling using a new Prioritizing Genetic Algorithm 111

 C1 (TFT=49) new chromosome (TFT=46)
t 9t15t3 t10 t6 t0 P1 t 9t13t3 t10 t6 t0 P1

t 7 t11t13t 8 t5 t2 P2 t7 t11t15t8 t5 t2 P2

 t12 t 14 t4 t1 P3 t12 t14 t4 t1 P3

Figure 5 Applying mutation on C1 and producing a new chromosome

3.5 Load balance

In this phase a new heuristic method called load balance is presented to reduce the
TFT of chromosomes. The method involves following steps:

1) First, two selected chromosomes in selection phase are reduplicated and then
the following operation is separately performed on two new chromosomes.

2) For one of the chromosomes from m processors, two processors which have
the maximum and the minimum finishing time are selected (Pmax and Pmin).
Then according to Equation (4), AVG is calculated as following:

(4) () 2/)()(minmax PTFTPTFTAVG −=
3) To balance the execution time of processors, task ti is selected which is

assigned to Pmax and its execution time is equal or less than AVG. If such a
task is not found, step 4 or load balance operation could not be performed.

4) Task ti is deleted from Pmax and then is added to Pmin in a suitable place based
on its NC in descending order, as all tasks’ execution precedence is
observed.

For example, the chromosome C1 and the task t15 are selected for the load balance
operation. As shown in Figure 6, applying the load balance guarantees improvement
of the fitness of chromosome C1.
After load balance operation, the uniqueness and completeness requirements are met
based on Lemma 1.

 C1 (TFT=49) new chromosome (TFT=47)
FT=43 t 9 t13 t3 t10 t6 t0 P1 FT=43 t9 t13 t3 t10 t6 t0 P1

FT=47 t7 t11 t 8 t5 t2 P2 FT=49 t7 t11t 15t8 t5 t2 P2

FT=43 t15t12 t14 t4 t1 P3 FT=41 t 12 t14 t4 t1 P3

AVG = (49-41)/2=4, time (t15)=2; AVG > time (t15)

Figure 6 Applying load balance on C1 and producing a new chromosome

3.6 Reproduction

After applying all operators and producing new chromosomes, the former
chromosomes along with new ones will be ordered based on their fitness and the next
generation receives the most appropriate chromosomes (the chromosomes with lower

112 Marjan Abdeyazdan, Amir Masoud Rahmani

TFT or best fitness) at the number of population size. Then the phases 3-2 to 3-6 will
be repeated as the number of generations. Finally, the best suitable chromosome is the
optimal or near-optimal schedule.

4. Simulations and Results

A range of simulations is done using the Visual Basic .Net version 2005 on a
computer Pentium IV, having AMD processor 2.8 GHz, and 512 MB memory of
RAM to evaluate our suggested algorithm.
Using our developed program - producing a random task graph automatically - 57
task graphs are created. Each graph could have 30, 70, or 90 tasks with task
dependency percentage between 20 and 90 and the execution time for each task is
random between 1 and 100 seconds. These graphs are scheduled on a multiprocessor
system with the number of 3, 5, or 7 processors for five heuristics: min–min, max-
min, duplex, MCT (Minimum Completion Time) and MET (Minimum Execution
Time) [2] and for two genetic-based algorithms: Genetic Algorithm whose Priority is
based on Task Height (GAPTH) [9] and our proposed algorithm. The results are
averaged over multiple runs for each algorithm.
For two genetic-based algorithms, the crossover rate is set to 0.7 and the mutation rate
is set to 0.05. Other parameters such as initial population size and the number of
generations are selected similarly for genetic algorithms to perform the scheduling at
the same conditions.

Table 6 The schedules for seven scheduling algorithms

Total Finish Time (TFT) (seconds)

Number of
processors = 3

Number of
processors = 5

Number of
processors = 7

Number of tasks Number of tasks Number of tasks
Algorithms

30 50 70 30 50 70 30 50 70

TFT
Mean

(s)

min–min 992.3 1689 2303 902.3 1561 2231 908 1485 2285 1595

max-min 975.3 1669 2206 835.3 1466 2220 850.6 1436 2183 1579

duplex 962.6 1669 2171 835.3 1466 2213 850.6 1436 2183 1572

MCT 988 1650 2148 836.6 1477 2271 858.6 1417 2177 1535

MET 966.6 1677 2164 835.3 1505 2268 890.3 1421 2178 1545

GAPTH 966.3 1634 2108 827.6 1447 2032 840.3 1410 2122 1487

Our
algorithm

881.6 1560 2052 727 1418 2141 800 1296 2049 1436

Table 6 shows the schedules and TFT mean for each seven scheduling algorithms.
The results indicate that our suggested algorithm finds better schedule with minimum
TFT compared to the other heuristics. While the computation time of the two above
genetic algorithms is more than the other five heuristics obviously, and is quite

Multiprocessor Task Scheduling using a new Prioritizing Genetic Algorithm 113

similar, as only their initial population producing step is different, the step is
calculated once.

Table 7 illustrates the results of simulations with varying task dependency percentage.
As shown here, if the number of tasks and processors, and the range of tasks’
execution time are considered constant, then the higher percentage of the task
dependency has better schedule for our developed algorithm compared with the other
genetic algorithm, named GAPTH. The reason lies in the fact that the higher the task
dependency is, the more number of children. Our scheduling algorithm is more
efficient than the other one as it acts based on NC.

Table 7 Schedules for two genetic algorithms with varying task dependency percentage
Efficiency of

our algorithm
to GAPTH

Mean TFT for Our
algorithm (seconds)

Mean TFT for
GAPTH (seconds)

Dependency
percentage

4.4 1439.2 1503.4 30
5.3 1506.1 1586.2 50
7.5 1363.6 1466.3 70

5 Conclusions

The task scheduling problem in multiprocessor systems is an NP_Hard problem.
Hence, using heuristic methods instead of classic ones, the optimal or near-optimal
schedule would be achieved in an acceptable time. Due to the higher potential of
genetic algorithms in solving the complex problems, they have been vastly acceptable
in the heuristic methods. In this paper, a new genetic algorithm was presented for task
scheduling in a multiprocessor system. In this algorithm, the priority of execution of
tasks is based on the number of their children, i.e., a task having more children will be
scheduled earlier. Our developed algorithm was compared to the genetic algorithm
whose priority is based on task height, and to the five well-known heuristics. The
results showed that our suggested algorithm improves the achievement of the near-
optimal schedule; however, the computation time of the two discussed genetic
algorithms are quite the same.

References

1. Goldberg D. E.: Genetic Algorithms in Search, Optimization and Machine Learning,
Reading. MA: Addison Wesley, (1989)

2. Braun T. D., Siegel H. J., Beck N. and et al.: A Comparison of Eleven Static Heuristic for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems. Journal of Parallel and Distributed Computing, vol. 61, pp. 810--837, (2001)

3. Rahmani A. M. and Resvani M.: A novel Static Task Scheduling in Distributed Systems
by Genetic Algorithm using Simulated Annealing. 12th International CSI Conference,
Iran, p. 83, (2007)

114 Marjan Abdeyazdan, Amir Masoud Rahmani

4. Bouffard V., Ferland J. A.: Improving simulated annealing with variable neighborhood
search to solve the resource-constrained scheduling problem. Journal of Scheduling, Vol.
10(4), pp. 375--386, (2007)

5. Silva M. L. and Porto S. C. S.: An Object-Oriented Approach to a Parallel Tabu Search
Algorithm for the Task Scheduling Problem. Proceedings of the 19th International
Conference of the Chilean Computer Science Society, p. 105, (1999)

6. Shenassa M. H. and Mahmoodi M.: a novel intelligent method for task scheduling in
multiprocessor systems using genetic algorithm. journal of Franklin institute, Elsevier,
(2006)

7. Yoo M. and Gen M.: Scheduling algorithm for real-time tasks using multiobjective hybrid
genetic algorithm in heterogeneous multiprocessors system. Computers and Operations
Research, Vol. 34(10), P. 3084--3098, (2007)

8. Zheng S., Shu W. and Dai S.: Task Scheduling Model Design Using Hybrid Genetic
Algorithm. in Proceedings of the First International Conference on Innovative Computing,
Information and Control, Vol. 3, pp. 316--319, (2006)

9. Hou E. S. H., Ansari N. and Ren H.: A Genetic Algorithm for Multiprocessor Scheduling.
IEEE trans. on parallel and distributed systems. vol. 5, no. 2, pp. 113--120, Feb. (1994)

10. Holland J. H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, (1975)

11. Zafarani Moattar E., Rahmani A.M., Feizi Derakhshi M.R., "Job Scheduling in Multi
Processor Architecture Using Genetic Algorithm", 4th IEEE International conference on
Innovations in Information Technology, dubai, pp. 248-251, (2007)

A Framework for Fair and Reliable Resource
Sharing in Distributed Systems

Tarek Helmy, Irfan Ahmad and Aleem K. Alvi

1

Abstract Peer-to-Peer (P2P) and distributed systems are typically designed
around the assumption that all peers/nodes will willingly contribute resources to
each other. They thus suffer from freeloaders, that are, participants who consume
many more resources than they contribute. For example, a peer/node may be will-
ing to be a resource consumer and not a provider. Moreover a resource provider
may not be providing efficient and reliable services to other peers/nodes and is
just sharing resources for the sake of resource sharing. In this paper, we propose a
framework for fair and reliable resource sharing in distributed/P2P systems. For
fairness we use the concept of accounting systems; where the entities of the sys-
tems are bank accounts, salaries and resource rates. Every system can use the re-
sources of other systems on payments from its salary and can select the resource in
competitive environment. Reliability is implemented by using the trust model;

perimental simulation used for evaluating and validating the performance of the
proposed framework. Results show that the framework is very trustable for the re-
source sharing with fairness and reliability in distributed/P2P systems.

Tarek Helmy
College of Computer Science and Engineering, King Fahd University of Petroleum and Miner-
als, Dhahran 31261, Mail Box 413, Kingdom of Saudi Arabia. On leave at Tanta University,
Egypt, e-mail: helmy@kfupm.edu.sa
Irfan Ahmad
College of Computer Science and Engineering, King Fahd University of Petroleum and Miner-
als, Dhahran 31261, Mail Box 413, Kingdom of Saudi Arabia., e-mail: irfanics@kfupm.edu.sa
Aleem K. Alvi
College of Computer Science and Engineering, King Fahd University of Petroleum and Miner-
als, Dhahran 31261, Mail Box 413, Kingdom of Saudi Arabia., e-mail: akalvi@kfupm.edu.sa

where reliability levels are modeled for realization of reliability in the system. Ex-

116 T. Helmy, I. Ahmed, and .A. K. Alvi

Keywords: Peer-to-Peer/Distributed systems, Fair and reliable recourse sharing.

1 Introduction

Recent years have seen the introduction of P2P systems, whose design relies cen-
trally on exchange of resources between peers. Exchanged resources include con-
tent, as in popular P2P file sharing applications, and storage capacity or CPU cy-
cles, as in computational and storage grid systems. Computation and storage are
the major resources in distributed systems. Resource sharing requires fairness and
reliability among the resources. Managing resources in terms of distribution
among the entities fairly either in non-distributed or in distributed environment is
one of the open challenges. The definition of a computational grid was primarily
centered on the computational aspects of grids [1]. Later iterations broadened this
definition with more focus on coordinated resource sharing and problem solving
in multi-institutional virtual organizations [10].

Two supposedly new approaches to distributed computing; P2P [12, 13,

14, 15, 22] and Grid computing [1, 3, 4, 5, 11, 21] have emerged in the past
few years, both claiming to address the problem of organizing large scale
computational resources; where, all resources are shared using the grids (like data
grids, computational grids, etc.). P2P technology is used to share the resources
among individual peers. The characterization of P2P is that, it is decentralized,
self-organizing, distributed systems, in which all or most communication is sym-
metric. This type of sharing is very dominant nowadays and may be the permanent
part of the future computing. At start, authorities criticized on this technique be-
cause of copyright problems. The one node (user or may say provider or consumer
on the other hand) can communicate and share a resource without any restriction
and monitoring by any authority. Majority of the resource sharing is developed [2]
for the copyrighted material (e-Books, audio and video). This capability gives the
power to individual peers to share resources and increases their utilizations. While
many P2P systems have implicitly assumed that peers will altruistically contribute
resources to the global pool and assist others, recent empirical studies have shown
that a large fraction of the participants engage in freeloading [15]. These issues de-
feat the purpose of resources sharing and cooperation originally intended by the
P2P/distributed systems. Thus there is an acute need for some frameworks and
mechanisms to be incorporated into these distributed systems so as to realize the
goal of fair and reliable sharing of resources among the systems in the distributed
environment.

We present a framework; as a solution to the above mentioned problem; of

fair and reliable resource sharing among the peers in the distributed environment.
In this framework, the goal of fairness is realized using concepts of bank account
and funds. The goal of reliability is realized by utilizing the concept of trusts.

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 117

Trust model is used for this concept, where the reliability of one supplier of a re-
source is measured by an input from all other consumers' satisfaction. Our seman-
tics of trust is simple and easy to implement compared with other trust models [11,
17, 19]. The rest of this paper is organized as follows. Section 2 gives a brief
overview of the related works. In Section 3 we provide a system model and speci-
fication for the proposed framework for resource sharing followed by an architec-
ture description and the details of the mechanisms for fairness and reliability. Sec-
tion 4 presents simulation results for evaluating and analyzing the performance of
the implemented framework, while concluding remarks and future work directions
are outlined in Section 5.

2 Related Works

A framework for providing incentives for honest participation in global-scale dis-
tributed management infrastructures is given in [7, 8]. The author’s approach in
[8] is given as (1) to provide rewards for participants that advertise their experi-
ences to others, and (2) to impose the credible threat of halting the rewards; for a
substantial amount of time; for participants who consistently provide suspicious
feedback. From security point of view, the researchers developed frameworks for
secure access and sharing among resources that prevent the malicious user from
the network.

Anthill [14] is a novel framework for P2P application, it is development based
on ideas such as multi-agent systems and evolutionary genetic programming. The
goals of Anthill are to provide an environment that simplifies the design and de-
ployment of P2P systems based on these paradigms, and to provide a test bed for
studying and experimenting with complex adaptive systems-based P2P systems in
order to understand their properties and evaluate their performance. Details of the
design and implementation of Anthill as storage management and ant scheduling
can be found in [14].

Ngan et al. in [20] present a design that enforces fair-sharing in P2P storage
systems. Their goal is to ensure that the disk space; a user is willing to put up for
storing other user’s files; is greater than the space consumed by the user’s files on
other disks. This design makes use of the fact that the resource in contention is
spatial in nature: any user’s claim that s/he is storing files for other users can be
verified after the claim is made.

The new Grid frameworks [9, 21] that implement the concept of dynamic trust
and reputation adaptation of resources based on community experiences. It has
harnessed the power of Web service technologies to allow communication and
flexibility in the framework. Again for security point of view the decentralized
P2P networks offer threats. Its open and decentralized nature makes it extremely
susceptible to malicious users spreading harmful content like Viruses, Trojans or,
even just wasting valuable resources of the network [10]. In order to minimize
such threats, the use of community-based reputations as trust measurements is fast
becoming a standard fact. The idea is to dynamically assign each peer a trust rat-

118 T. Helmy, I. Ahmed, and .A. K. Alvi

ing based on its performance in the network and store it at a suitable place. Any
peer wishing to interact with another peer can make an informed decision based
on such a rating [18].

Authors of paper [23] presented Credence, a decentralized object reputation
and ranking system for large-scale P2P file sharing networks. Credence counter-
acts pollution in these networks by allowing honest peers to assess the authenticity
of online content through secure tabulation and management of endorsements
from other peers. The system enables peers to learn relationships even in the ab-
sence of direct observations or interactions through a novel, flow-based trust com-
putation to discover trustworthy peers.

Czajkowski in [6] discusses the concept of directory service so as to identify
different resources available as services across the network. The job of selecting a
non-local resource for computation needs of a node in the network is carried by a
super-scheduler. An agent is responsible for deciding if its local application needs
some remote resources by monitoring the external resource availability. For man-
aging security related issues, an information provider may specify; for each piece
of information that it maintains; the credentials that must be presented to access
that information.

3 The Proposed Framework

We propose a framework for fair and reliable resource sharing in distributed P2P
environment. Resource implies any service offered by a system in the network like
storage and/or computation. By “fair” we mean that we should not allow a system
to just use resources from other systems but rather it should also provide its own
resources to other systems in a proportional scale. Thus a system should not only
be a consumer but also a service provider in the distributed P2P environment. We
use the concept of the bank account and salary to model the goal of fairness. As il-
lustrated in Figure 1, there is a global monetary agent in the system which will be
acting as a bank for the systems in the network. This monetary agent unit will be
responsible for maintaining the bank balances for each system in the network, to
deposit regular salaries to each system at regular times, and to adjust the balance
between systems whenever one of them takes service (consumes resource) from
another system. By “reliable” we mean that the consumer of the resource (CPU
time, Storage etc...) should get good service from other systems and that it was not
“cheated”. Moreover any particular system should not be overloaded by offering a
lot of services to other systems. This will again be achieved by the concept of
variable rates. Thus our framework not only promotes fair sharing of resources
among the systems but also reliable resource sharing as it will be shown hereafter.

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 119

3.1 Proposed Framework Architecture

Systems in a network cooperate with each other and provide resource sharing,
where we consider a system as an autonomous peer in the distributed systems. As
shown in Figure 1, each system has Decision Making Units (DMU) to help itself
in making decisions related to selection of services from other systems in the dis-
tributed systems. The decision for selecting resources is based on the value of reli-
ability level and the resources rate of that particular system. Thus query to the de-
cision unit will be of the form: Request (iR , C, T) where, iR = Resource context i,
C = Maximum rate willing to pay, and T = Minimum trust level of the server
node. Therefore the system requires a resource will shortlist the other systems
based on the reliability level. Then it selects the system offering the cheapest rate
among the listed systems by searching Global Bulletin Board (GBB).

Fig. 1: Overall system architecture

The proposed framework will have a GBB publishing the current resource
rates offered by all systems in the network for different resource types. Each row
in the table will have information for each resource type and the columns signify
the system offering the service. Thus R (i, j) = x means rate offered for resource ‘i’
by server ‘j’ is ‘x’ units per time unit. As discussed before, there will be a global
monetary agent in the network to manage monetary related information of the sys-
tems in the network. This global agent will deposit salaries to the accounts of re-
spective systems in the network at regular time intervals so that they can use them
in turn to avail the services from other systems in the network. A form of taxation
has been implemented so as to avoid excessive accumulation of salaries by any
system. A resource requirement by any system will be notified to the monetary
agent. Now the monitory agent will deduct amount from this particular system’s

120 T. Helmy, I. Ahmed, and .A. K. Alvi

bank account and will deposit it to the server’s bank account based on the resource
context and the rate. Thus a system should have enough funds in its account so as
to avail services from other systems in the network. If it has insufficient funds in
its account than it can take one or more of the following decisions:

1. It can wait for until it receives its regular salary from the monetary agent.
2. It can encourage other systems in the network to use its shared resources

by decreasing the resource rate. As more systems use this system's re-
sources, its fund will increase.

3. It can make changes to its local policies so that it serves other systems
more reliably. This will lead to better reliability levels and will encourage
other systems to avail services of this system leading to increase the fund
of this system.

We observe from the above discussion that systems in the distributed envi-
ronment will be encouraged to share resources and offer better quality and service.
Thus by using the rate and reliability levels, useful and flexible policies can be
created by individual systems to suit there local needs.

3.2 Resource Rate

Each system in the network will offer resource rate for services to other systems.
This rate can be dynamic in the sense that the system can change the current rate
or willing to charge for one or more of its resources. Any change in the resource
rate by a system has to be notified to GBB so that this new rate will be reflected to
other systems in the network. The change in rate could be due to various factors
like the current consumption/demand for the resource, local needs of the system,
reliability level, and etc. To avoid very frequent changes in the rate, a policy has
been implemented globally to restrict the systems so that they can change their
rates only after "�t" time units once it has changed the rate, (this value of "�t" can
be common based on some relevant criteria). In our experimentation, a system
changes its current rate and willing to charge for a particular resource based on its
current bank balance, the fraction of fund it has consumed and the fraction of time
left before it will get its regular salary. Let "�b" denote the fraction of balance left
when compared to original balance and "�t" denote fraction of time left before
regular salary deposit. For any resource type, the current rate a system is willing to
charge will be updated as:

rateoldtbrateoldratenew)%(�	���

The resource rate is updated in regular interval of time. Thus a system having
more balance fraction in comparison to time fraction (it means that system’s fund
utilizations are very slow) will increase the rate for resources. Therefore the sec-
ond term of the equation will be positive. Whereas a system having less balance in
comparison to time for salary dispatch to account (it means that system’s fund

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 121

utilizations are very fast) will require decreasing its rate. Therefore the second
term of the equation will become negative. It means that if systems use their funds
quickly and funds are exhausted so the system should decrease its local resource
rate to attract clients for providing services. On the contrary it means that the sys-
tem’s local funds will increase and may be used for taking services from other sys-
tems. Hence the equation second term always keep balance in either the situation
as mentioned.

3.3 Reliability Scale

Each system in the network will have a reliability value ranging in the scale of 1 to
7. Reliability values from 1 to 3 signify "low", 4 to 5 signify "medium" and 6 to 7
signify "high" reliability levels. Reliability value for a particular system can be
different than other systems based on the experiences of the observer system while
dealing with the particular system. The reliability computation unit of the system
will store the reliability levels of different systems in the network as perceived by
itself. We introduce a term �(i)=x (reliability level of system i is x) as perceived
by a system. Each system periodically inquires about the reliability level of other
systems in the network. Let each system respond with a value � (i, j) meaning re-
liability level of system i is � as perceived by system j. Thus a particular system
will update the reliability level of a target system x as follows:

systemsofnonwherejiR
n

j
i .,),(

1
�
� �

�

itt Rii)1()(*)(1 �� 	�
�
 �
Where � = 0.5 gives equal weights to old and new information.

4 Experiments and Results

We conducted simulation experiments to demonstrate how the proposed frame-
work satisfies the fairness goal. We simulated the distributed environment for 10
systems. Each system is initially given a salary of 500 units (this is the incentive
given to the systems for joining the network). Salaries of 100 units are deposited
to every system after �t regular time interval. To avoid domination by any particu-
lar system in the network, we implemented a form of taxation where no system is
allowed to exceed balance of 500 at the time as a salary deposit. In our simulation,
context for resource sharing is CPU computation. Resource rate for each system is
initially fixed at 250 units. It means to get service once; a system needs to pay 250
units. Individual resource rates can be varied by each respective system depending
on its own local conditions of consumption and account balance. Rate updates are
done much more frequently by each system as compared to salary deposits (in our

122 T. Helmy, I. Ahmed, and .A. K. Alvi

simulation a system can change its rate 6 times between two salary deposits).
There are upper and lower limits to the resource rates (250 and 50 respectively i.e.
1/2 and 1/10 of salary respectively). We conducted two experiments as follows:

Scenario 1:

In this scenario, there are 10 systems and requests for remote service are gen-
erated randomly. Thus each system will have about the same number of requests
for shared resource. All the other condition and criteria (e.g. fairness) are used as
described above. Simulation results of scenario 1 are shown in the following Fig-
ures. In Figure 2, we show the fairness results for each system. The number of
times it receives service from other systems is shown against the number of times
it offers its services to other systems. From the figure we can see that our frame-
work does satisfy the fairness goal as there are small fluctuations between services
availed verses services offered for each system.

Fairness Results Scenario 1

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7 8 9 10
System Number

Service Offered

Services Received

Fig. 2: Services received vs. services offered for Scenario 1

In Figure 3, we present the results for satisfaction. By satisfaction we mean
the number of times a system needs a shared resource against the number of times
it succeeded in getting served. We know from the framework discussion that, for a
system to get a resource, it should have enough balance to pay the system offering
the resource. From Figure 3, we can see that although satisfaction results for each
system is high; still we are testing some mechanisms to increase the satisfaction
rate further.

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 123

Satisfaction Results

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

System Number

Opportunities

Succeeded

Fig. 3: Opportunity vs. success for Scenario 1

Figure 4 and Figure 5 show the trends in rates and funds for few systems between
two time intervals.

Scenario 2:

In this scenario there are 10 systems and we choose two systems at random
such that the need for shared resource for these two systems is twice in compari-
son of other systems in the network. We were interested to see how the proposed
framework behaves in these conditions. All the other conditions are kept same as
before. Simulation results of scenario 2 are shown in the Figures 6, 7, 8, and 9.

Resource rates trend: Scenario 1

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (t) ->

R
at

e

System 1
System 2
System 3
System 5

Fig. 4: Resource rates trend for Scenario 1

124 T. Helmy, I. Ahmed, and .A. K. Alvi

Funds trend: Scenario 1

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time (t) ->

B
al

an
ce

System 1
System 2
System 3
System 5

Fig. 5: Funds trend for Scenario 1

In Figure 6, we show the fairness results for scenario 2. We can see that the
proposed framework satisfies the fairness goal as there is not much fluctuation be-
tween services availed verses services offered for each system. Even though sys-
tem 5 and system 9 have high requirements for shared resource as compared to
other systems, still the overall conditions are balanced.

In Figure 7, we show the satisfaction results in case of scenario 2. We may get

an impression that the satisfaction results are very low but on careful examination
we can see that the satisfaction although being low with compare to scenario 1,
however it is not low as initially understood. Going back to Figure 3 we can see
that satisfaction rates are varying from 70% to 75% for each system.

Fairness result Scenario 2

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
System Number

Service Received

Services Offered

Fig. 6: Services received vs. services offered for Scenario 2

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 125

From Figure 7 we can see that except for system 5 and system 9 (systems hav-
ing high shared resource needs), satisfaction rates are slightly higher than Scenario
1. Even for system 5 and system 9 the satisfaction rates are 66.23 % and 58.56 %
respectively. We can see that the satisfaction rate dropped by around 10% and
15% respectively even though the resource requirement (shared) increased by
around 76% and 64% respectively. Thus we claim that our framework success-
fully achieved its goals. However some work is under exploration to further in-
crease the satisfaction rates in an unbalanced scenario.

Satisfaction results: Scenario 2

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10
System Number

Opportunities
Succeded

Fig. 7: Opportunity vs. success for Scenario 2

Figure 8 and Figure 9 show the trends in rates and funds for few representative
systems between two time intervals.

Resource Rates trend Scenario 2

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (t) ->

R
at

e

System 1
System 2
System 3
System 5

Fig. 8: Resource rates trend for Scenario 2

126 T. Helmy, I. Ahmed, and .A. K. Alvi

Funds trend Scenario 2

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (t) ->

B
al

an
ce

System 1
System 2
System 3
System 5

Fig. 9: Funds trend for Scenario 2

5 Conclusions and Future Work

Fair and reliable resource sharing is one of the major issues in P2P/distributed sys-
tems. To realize the intended benefit of resource sharing in distributed systems we
need mechanisms to support fair and reliable sharing of resources. We presented a
framework to realize these goals in this paper. The concepts of bank accounts,
regular salary deposits and resource rates were used in the framework to achieve
fairness. Reliability levels were used to model reliability. We have conducted ex-
perimental simulations to make a consistent evaluation of the framework’s per-
formance and to validate the claim. The results were promising but still there is
scope of improvements. Some of the important areas for improvement as future
work are as follows. Incorporate mechanism increasing the satisfaction rates for
systems and concepts like "Borrow Criteria" can be introduced where systems
which have high demand for shared resources can be satisfied by some sort of
mechanisms like loans.

Acknowledgments

We would like to thank King Fahd University of Petroleum and Minerals for pro-
viding the computing facilities. Special thanks to anonymous reviewers for their
insightful comments and feedback.

A Framework for Fair and Reliable Resource Sharing in Distributed Systems 127

References

1. Alunkal K (2003) Grid Eigen Trust: a framework for computing reputation
in grids. Master Thesis, Graduate College of the Illinois Institute of Tech-
nology.

2. Biddle P et al. (2002) The Darknet and the Future of Content Distribution.
MSC 2002, http://msl1.mit.edu/ESD10/docs/darknet5.pdf

3. Bharadwaj V and Wong M (2004) Scheduling divisible loads on heteroge-
neous linear daisy chain networks with arbitrary processor release times.
IEEE Trans Parallel Distributed Systems, 15:pp.273–288.

4. Banini C et al. (2004) Scheduling strategies for master-slave tasking on
heterogeneous processor platforms. IEEE Trans Parallel Distributed Sys-
tems, 15: pp.319–330.

5. Chien A et al. (2003) Architecture and Performance of an Enterprise Desk-
top Grid System. Journal of Parallel and Distributed Computing, V 63, El-
sevier Science, V. 36 no.5, pp.597–610.

6. Czajkowski K et al. (2001) Grid information services for distributed re-
source sharing. 10th IEEE International Symposium on High Performance
Distributed Computing, pp.181-194.

7. Ernesto Damiani et al. (2002) A Reputation-Based Approach for Choosing
Reliable Resources in Peer-to-Peer Networks, Proceedings of the 9th ACM
conference on Computer and communications security pp.207-216.

8. Fernandes A et al. (2004) Pinocchio: Incentives for honest participation in
distributed trust management, 2nd International Conference, iTrust, Oxford,
UK, Volume LNCS 2995/2004, pp.64-77.

9. Foster I and Kesselman C (1998) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA.

10. Foster I et al. (2001) The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, Journal of High Performance Computing Applications,
15(3): pp.200-222.

11. Foster I (2002) The Grid: A New Infrastructure for 21st Century Science.
Physics Today, pp.42-47.

12. Kevin Walsh and Emin Gun Sirer (2006) Experience with an Object Repu-
tation System for Peer-to-Peer File sharing, Proceedings of the 3rd confer-
ence on 3rd Symposium on Networked Systems Design & Implementation -
Volume 3, pp.1-1.

13. Oram A (2001) Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies. O’Reilly.

14. O. Babaoglu (2002) A Framework for the Development of Agent-Based
Peer-to-Peer Systems, In IEEE Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, pp. 15-22.

15. P. Krishna (2002) A measurement studies of Napster and Gnutella as ex-
amples of peer-to-peer file sharing systems, Multimedia Systems Journal,
9(2): pp.170-184.

128 T. Helmy, I. Ahmed, and .A. K. Alvi

16. Runfang Zhou (2007) Power Trust: A Robust and Scalable Reputation Sys-
tem for Trusted Peer-to-Peer Computing. IEEE Transactions on Parallel
Distributed Systems, vol. 18, no. 4, pp.460-473.

17. Seti@home, "A system uses Internet-connected computers in the Search for
Extraterrestrial Intelligence (SETI)", http://setiathome.berkeley.edu/.

18. Shirky C, "What is P2P and what isn't?
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html

19. Singh A and Liu L (2003) TrustMe: Anonymous Management of Trust Re-
lationships in Decentralized P2P Systems. Proceedings of the 3rd IEEE In-
ternational Conference on Peer-to-Peer Computing.

20. T. Ngan et al. (2003) Enforcing Fair Sharing of Peer-to-Peer Resources,
Springer LNCS, Volume 2735, pp.149-159.

21. Van Moorsel and A P A, Grid, Management and Self-Management" The
Computer Journal, Vol. 48, Issue 3, pp.325-332.

22. Vivek Vishnumurthy et al. (2003) KARMA: A Secure Economic Frame-
work for P2P Resource Sharing, http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

23. Zhenggiang Liang and weisong Shi (2005) Enforcing Cooperative Re-
source Sharing in Un-trusted Peer-to-Peer Environment, Journal of Mobile
Networks and Applications, Journal of Mobile Networks and Applications,
Vol. 10, No.6, pp.971-983.

An Agent Based Architecture for DAG
Scheduling

Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

Abstract This paper presents an efficient agent based DAG scheduling system. The
proposed system has a decentralized architecture. It is able to manage tasks with
dependencies, and bases its decisions on Grid resources’ status captured dynam-
ically and used at schedule time. Fault tolerance mechanisms can also be easily
implemented, providing a great degree of certainty that the schedule results will be
correct and delivered before the imposed deadline. The system has been integrated
and tested with MonAlisa farms and the ApMon, which is a MonAlisa extension.
The results obtained so far in the performed experiments show that the system in-
troduces a reasonable overhead while producing higher quality mappings than the
centralized ones.

1 Introduction

A Grid scheduler receives applications from users and determines the resources that
will be used for each task. This is very difficult in Grid environments where we
are dealing with shared resources in dynamic Virtual Organizations. In a Grid en-
vironment multiple schedulers could be deployed. The scheduling system is also
responsible for the transfer of input data where and when they are required by the
scheduled tasks. It also collects the results and presents them to the user who sub-
mitted the tasks. The Grid scheduler ensures that mapping the applications to re-
sources satisfy some optimization criteria such as the average response time and the
balanced resource utilization.

Grid schedulers take decisions regarding the resources, which are situated in sev-
eral locations and are not directly accessible. As a result, Grid schedulers work with
various agents or brokers[1], usually considered as part of a Grid scheduling system.

Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea
Faculty of Automatics and Computer Science. University Politehnica of Bucharest, e-mail:
{catalinl,florinpop,corina,valentin}@cs.pub.ro

130 Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

The Grid scheduler needs accurate information on resource availability at differ-
ent sites. This information is dynamically provided by a Grid Information Service
(GIS), which is responsible for collecting and delivering resource state information
such as CPU capacity and load, memory size, network bandwidth, and software
availability. On the other hand, an Execution Service ensures the communication
with multiple heterogeneous schedulers that operate at the level of resources that
will execute the applications.

One solution for efficient and high performance execution of applications on
distributed computing resources is breaking the problem into smaller pieces, which
means partitioning the applications into smaller tasks. This can lead to dependent
tasks, which ask for the design and use of more complex scheduling algorithms. The
collection of tasks with dependencies that compose an application can be modeled
as a Directed Acyclic Graph (DAG)[2] with weighted nodes and edges. Each node
represents an individual task and its associated weight represents the execution time.
An edge represents a dependency between two tasks; its weight represents the time
needed to transfer data from the task producing it to the destination task before it
can start execution.

The existing DAG scheduling systems have a centralized architecture. One of
the most widely used instruments for DAG scheduling is DAGMan[9], which man-
ages inter-job dependencies for Condor[13]. DAGMan works as a meta-scheduler,
submitting the jobs to Condor in the order that corresponds to a topological sort
of the graph; it also has fault-recovery capabilities. Other examples of workflow
scheduling systems are the WorkFlow Enactment Engine (WFEE)[10], Pegasus[15]
and Triana[16]. WFEE supports just-in-time scheduling, which permits resource al-
location decision to adapt to changing grid environments. Current schedulers with
decentralized architecture have been built to only schedule independent tasks. An
example is Nimrod/G[11], which focuses on the management and scheduling based
on the concept of computational economy.

As in many scientific applications the typical size of DAGs is of the order of thou-
sands of nodes, the centralized approaches to scheduling have the disadvantage of
poor scalability. In order to overcome this problem, we propose here a decentralized
DAG scheduling system. The system is able to manage tasks with dependencies,
and bases its decisions on Grid resources’ status captured dynamically and used at
schedule time. Like other Grid schedulers, it makes use of Grid services such as
automatic resource discovery service, monitoring service, etc. It has been tested in
experiments with complex jobs used for satellite image processing[8].

The remainder of this paper is structures as follows. In Section 2 we discuss
the details about the architecture, describe the role of the major components, and
presents the agents-brokers communication model. The advantages of choosing this
architecture are also described here. In Section 3 we present the job description
format, which is used to create the corresponding task graph and to submit new jobs
for execution. In Section 4 we shortly describe the scheduling algorithms considered
in the experiments and how the results relate to the scheduler’s performance. The
last part is dedicated to conclusions and further work.

An Agent Based Architecture for DAG Scheduling 131

2 Scheduling architecture

Generally, Grid scheduling involves three main phases: (1) discovery of available
resources, which generates a list of potential resources; (2) gathering information
about these resources and selecting a good sub-set of them; and (3) job execution,
which includes file staging and cleanup.

Our project extends the DIOGENES architecture[12] for scheduling dependent
tasks. DIOGENES uses a decentralized solution based on genetic algorithms for
task scheduling in heterogeneous environments. It exploits the ability of parallel ge-
netic algorithms, organized according to a replicated workers paradigm, to produce
a near to optimal solution in a reasonable short time. In this new scheduling system,
we use the same replicated workers model. This time, different workers run differ-
ent scheduling algorithms that try to find an optimal schedule. Workers’ results are
passed to the master, which selects the best schedule.

The scheduling system’s architecture is presented in Fig. 1 and is, in many re-
spects, similar to that of DIOGENES.

The services included have the following roles:

• The Lookup Service detects the available hosts where it can run the scheduling
algorithm.

• The Grid Monitoring Service returns, in real-time, information about the various
site facilities, networks, and about the state of the current activities performed
in the system, including data about the scheduled tasks that were sent for execu-
tion. The monitoring data is used by the scheduler to determine if a resource is
available at a given time or if it meets the requirements for a particular task.

• The Execution Service receives the mappings returned by the scheduling algo-
rithm, prepares and sends the tasks for execution on allocated resources. Since
the Grid shcheduler doesn’t have direct access to the resources this service sub-
mits the tasksto a local scheduler like Condor or PBS.

• The Grid Service accepts the new jobs submitted by users and direct them to the
scheduler. The use of this service improves the system’s flexibility as a user can
submit a new job remotely, from any place, and at any time, doesn’t matter if the
scheduler is running or not.

There are two entities that compose the scheduling system: brokers and agents. A
broker receives the scheduling requests from a client and sends the tasks to be sched-
ule to the agents. The agents are responsible for running a scheduling algorithm for
the jobs received from a broker using the monitoring information. Multiple schedul-
ing requests can be sent at the same time. A broker can run on a different remote
machine or on the same machine as an agent. In this way any available resources can
be used to run the scheduling algorithm and at the same time all the computers can
receive scheduling requests from users. Details about the format of the description
files and the information they contain can be found in the next section of this paper.

In the experiments performed with this scheduler system, it has been demon-
strated that the increased load due to the parallel execution of brokers and agents

132 Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

Scheduler

Execution
Service

Grid Monitoring
Service

Lookup Service

USERS Grid Service

Fig. 1 Scheduling architecture

does not affect the overall performance in a significant way. In addition, with this
approach, the number of available machines able to run a scheduling algorithm in-
creases.

This scheduler has a decentralized, agent based architecture, which presents sev-
eral important advantages. The main reason for such an architecture is the significant
increase in fault tolerance of the scheduler. Since each task mapping is generated by
a single agent, the system can easily recover from an agent failure by sending the
scheduling request to another available agent. To further improve fault tolerance
and also the quality of the mappings the broker can send the same request to two or
more agents which will then generate the results independently using different al-
gorithms. This will allow the broker to select the best task mapping from the results
received from the agents, and if one of the agents stops functioning it will not affect
the overall performance.

Using JINI technology for the lookup service makes it very easy to add new
agents to the system. They are immediately recognized and can start running the
job scheduling algorithm. Another important advantage is the support for fault tol-
erance: if any agent fails, the scheduling process can still be completed by one of
the remaining agents. The parallel use of different scheduling algorithms and the se-
lection of the best schedule improves the performance of the whole Grid scheduling
system.

The scheduler has been integrated and tested with MonAlisa[14] farms and the
ApMon, which is a MonAlisa extension.

An Agent Based Architecture for DAG Scheduling 133

Agent

Agent

Agent

Agent
User

User Broker

Broker

Requests scheduling of
groups of tasks

Requests scheduling of
groups of tasks

Sends groups of
tasks

Sends groups of
tasks

Fig. 2 The DIOGENES communication model

3 Job description

A client can submit an application by sending the job description in an XML format.
This format was designed to be very easy to understand and edit when describing
very complex jobs.

For each task, the description contains information about the estimated process-
ing time, the links to other tasks, and the required costs associated with different
links. For each task we can also set the memory and CPU requirements. The exact
XML format can be seen in the example below.

< task >
< taskId > 3 < /taskId >
< path > /home/student/executabile/loop100.sh < /path >
< arrivingDate > 2008/05/04 < /arrivingDate >
< arrivingTime > 01 : 20 : 00 < /arrivingTime >
< arguments >< /arguments >
< parent >

< Id > 1 < /Id >
< Cost > 5 < /Cost >

< /parent >
< child >

< Id > 5 < /Id >
< Cost > 10 < /Cost >

< /child >
< requirements >

< memory > 1024.0MB < /memory >
< cpuPower > 2745.9404MHZ < /cpuPower >
< processingTime > 1 < /processingTime >
< deadlineTime > 2008/08/0920 : 59 : 30 < /deadlineTime >
< schedulePriority > 1 < /schedulePriority >

< /requirements >

134 Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

< nrexec > 1 < /nrexec >
< /task >

The important elements of this format are the parent and child tags which are
the difference tasks with dependencies and independent tasks. These tags are not
necessary if the user wishes to submit a set of independent tasks.

In case of a complex job, for each task the user must specify a parent tag for
each link with a parent task, and a child tag for each child task. Each of these tags
contains the elements Id and Cost. The Id indicates the identity of the parent or child
task; the Cost is the weight associated with the link.

4 Scheduling algorithms

For the experimental evaluation of the Grid scheduling system, two algorithms were
chosen: ISH (Insertion Scheduling Heuristic)[5], and CCF (Cluster ready Children
First)[3]

ISH is a list scheduling algorithm that tries to fill the gaps left in the mappings
by previous scheduled tasks. The tasks are first ordered giving priority to the ones
with higher blevel values. The blevel (bottom level) is the weight of the longest path
from a node to an exit node of the DAG. The algorithm for computing the blevel is
described below:

Create RTList, a list of nodes in reversed topological order.
foreach node n of RTList do

max = 0
foreach child c of n do

if (blevel(c) + Cn,c) > max then
max = blevel(p) + Cn,c

endif
endfor
tlevel(n) = τn + max

endfor

In the listing above τn is the cost of the node p and Cn,c is the weight of the link
between the nodes n and c.The blevel is a dynamic attribute and must be computed
again after each task has been scheduled. This is done because the link between two
tasks can be zeroed if they are mapped on the same resource. Ordering the tasks
according to the blevel tends to schedule the nodes on the critical path first.

The ISH algorithm selects the next node that will be scheduled from a ready
list which contains the nodes whose parents have already been mapped so they are
ready to be scheduled. From this list the nodes with a higher blevel have the highest
priority. The blevels of the nodes are computed statically at the beginning of the

An Agent Based Architecture for DAG Scheduling 135

algorithm. The selected node is assigned to the processor that allows the earliest
execution, using the non-insertion algorithm (the task is scheduled to the processor
using a FIFO queue).

If the scheduling of this node causes an idle time slot, then the algorithm sched-
ules as many nodes as possible into this idle time slot, providing that these nodes
cannot be scheduled earlier on other processors. Then it selects a new ready node
and repeats all these steps.

A task is scheduled to the resource that allows the earliest execution time. If this
schedule causes an idle time slot on that resource then the scheduler tries to add as
many tasks as possible in that idle time interval.

CCF is a dynamic list scheduling algorithm that assigns resources, at run-time,
to tasks described by a DAG. The algorithm is described below:

Insert sourceTask into RUNNING QUEUE
while (RUNNING QUEUE is not empty) do

task = extract (RUNNING QUEUE)
foreach child of task do

Insert child into CHILD QUEUE
endfor
while (CHILD QUEUE is not empty) do

childTask = extract(CHILD QUEUE)
if (childTask is ready) then

assignResource(childTask)
updateSuggestedResource(childTask)
Insert childTask into RUNNING QUEUE

else
suggestResource(childTask)

endif
endwhile

endwhile

The algorithm maintains RUNNING QUEUE and a CHILD QUEUE. The RUN-
NING QUEUE contains the tasks that have already been mapped to a resource and
the CHILD QUEUE contains the children of the mapped tasks. At each step, the
algorithm assigns a resource to the tasks in the CHILD QUEUE and moves them to
the RUNNING QUEUE if they are ready to be scheduled.

Using this algorithm a child task with one parent is immediately assigned to a
resource while children with multiple parents must wait until all its parents have
been scheduled. After the child task has been mapped to a resource it is submitted
for execution and placed in the running queue.

136 Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

5 Experimental results

In order to test our scheduling system, an experimental cluster with 11 computing
resources was configured. The first results (see Fig. 3) show the variation of the
scheduling algorithm’s completion time with an increasing number of tasks sub-
mitted for scheduling. In this figure, the completion time (in milliseconds) of the
algorithm is represented on the vertical axis, while the number of tasks in the job is
represented on the horizontal axis. The tests were made by submitting jobs of 10 to
1000 tasks.

In this experiment, the execution times of the two algorithms are very close to
each other since the two algorithms have similar complexity.

Another element that contributes to the overall performance of the system is the
time needed for the parsing of the input files used to specify the submitted job. The
size of the input files depends on the number of tasks it contains and on the number
of links between them. As we can see in this graph the parsing time may be small
for files with few input files but it must be taken into account as it greatly limits the
overall performance of the system.

Since an agent based architecture is used and jobs can be submitted remotely, we
also took into account the communication time needed to send the job descriptions
to an agent running a scheduling algorithm and the time to receive the resulting
mappings. For example an input file with 1000 tasks may become as large as 7MB
which can slow down the job submission process.

The results are presented in Fig. 4. The communication times become relevant
only for very complex jobs and we can see that the overhead is within acceptable
levels.

The scheduling completion time can be defined as the time passed between the
job submission and the moment when the task mappings are generated and can

Fig. 3 Algorithm completion time

An Agent Based Architecture for DAG Scheduling 137

Fig. 4 Communication times

be sent to the Execution Service. This can also be seen as the sum of the delays
described above:

Tt = tc + tp + talg (1)

Using this formula we can calculate Tt which is the scheduling completion time.
The delay tc is the communication time needed to send the job description file to the
agent that will run the scheduling algorithm and tp is the time needed to parse this
data. The final delay talg is the completion time of the scheduling algorithm. We can
se from the first chart that this is the most time consuming operation and depends
mostly on the algorithm used.

Another use for an agent based architecture is to provide a comparison between
various scheduling algorithms. If more than one agent is idle when a new job is
submitted then they can be used to run different scheduling algorithms for the same
scheduling. In the example presented in Fig. 5, two agents are used to generate
mappings for up to 500 tasks.

As we can see in this figure, the two agents complete the scheduling in nearly
the same time. Because the algorithms are run on different agents the time that the
broker needs to wait for the mappings is not much higher than in the case when just
one agent was executing a single scheduling algorithm. The schedule lengths can be
very different for the same group of tasks, depending on the number of dependencies
between tasks, the communication costs and other parameters so another advantage
in using this approach is that, after all the agents have finished, the broker has a
number of mappings and can easily choose the one with the shortest schedule length.

138 Catalin Leordeanu, Florin Pop, Corina Stratan and Valentin Cristea

Fig. 5 Scheduling the same group of tasks using two agents

6 Conclusions and future work

This paper proposes a system for DAG decentralized scheduling. This approach
has the benefit of being very efficient and fault tolerant due to the agent architec-
ture. The architecture is also very flexible, as new computers can be set up to run
agents, brokers or both. They are immediately recognized and ready to be used in
the scheduling process.

The agents can be configured to run any scheduling algorithm, so the scheduling
can be improved by a selection of the best schedule from the ones delivered by
different agents.

After the task mappings have been generated the Execution Service asked to
send the jobs to allocated resources. The execution service has been integrated with
a number of local schedulers like Condor and PBS thus making it possible to work
with different environments.

In the future, we intend to optimize the transfer of job description files and of the
input files of different tasks in order to minimize the communication delays. This
would be used to reduce the overhead and to improve the overall efficiency of the
system. Building an efficient file transfer system would also solve the problem of
co-scheduling, which is very important when submitting complex jobs with large
input files.

We are also working on a checkpointing system that will improve the fault toler-
ance facility of the architecture. In case of an agent or resource failure, the broker
will keep the mappings until the last checkpoint and so the rescheduling process
will have a head start. The only tasks that will need to be rescheduled will be the
ones that were mapped after the most recent checkpoint.

An Agent Based Architecture for DAG Scheduling 139

References

1. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J.Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su and D. Zagorodnov, Adaptive
Computing on the Grid Using AppLeS (2003)

2. Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (1999).

3. Alberto Forti, DAG Scheduling for Grid Computing Systems (2006)
4. Waldo, The Jini architecture for network-centric computing, Communications of the ACM,

July 1999
5. B. Kruatrachue and T.G. Lewis. Duplication scheduling heuristics (dsh): A new precedence

task scheduler for parallel processor systems. Technical report, Oregon State University
(1987)

6. Florin Pop, Dacian Tudor, Valentin Cristea, and Vladimir Cretu, Fault-Tolerant Scheduling
Framework for MedioGRID System (2007)

7. Florin Pop, Valentin Cristea Intelligent Strategies for DAG Scheduling Optimization in GRID
Environments, CSCS16 Conference, May 2007, Bucharest, Romania

8. Marcela S. Boboila, George V. Iordache, Florin Pop, Valentin Cristea, A Framework for
Scheduling Image Processing Applications in MedioGRID (2006)

9. Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid. In Fran Berman,
Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality, December 2002

10. J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple Spaces.
In 5th IEEE/ACM International Workshop on Grid Computing (Grid 2004), Pittsburgh, USA,
IEEE CS Press, Los Alamitos, CA, USA, Nov. 8, 2004.

11. R. Buyya, D, Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource Manage-
ment and Scheduling System in a Global Computational Grid, HPC Asia 2000.

12. G. Iordache, Marcela Boboila, F. Pop, Corina Stratan, V. Cristea, ”A Decentralized Strategy
for Genetic Scheduling in Heterogeneous Environments”, in Lecture Notes in Computer Sci-
ence, Springer Vol. 4276 ”On the Move to Meaningful Internet Systems”, Meersman, R.; Tari,
Z. (Eds.) 2006, proceedings GADA, Montpellier, France, November 2-3, 2006, pp 1234-1251

13. Condor web page: http://cs.wisc.edu/condor
14. MonALISA Web page: http://monalisa.cacr.caltech.edu/
15. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,

Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C.
Jacob, Daniel S. Katz. Pegasus: a Framework for Mapping Complex Scientific Workflows
onto Distributed Systems, Scientific Programming Journal, Vol 13(3), 2005, Pages 219-237

16. I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana Workflow Environment: Ar-
chitecture and Applications, in I. Taylor, E. Deelman, D. Gannon, and M. Shields, editors,
Workflows for e-Science, pages 320-339. Springer, New York, Secaucus, NJ, USA, 2007

IV
GRID PROGRAMMING ENVIRONMENTS

Workflows in a secure environment

Norbert Podhorszki1 and Scott Klasky2

Abstract. Petascale simulations on the largest supercomputers in the US require
advanced data management techniques in order to optimize the application scien-
tist time, and to optimize the time spent on the supercomputers. Researchers in
such problems are starting to require workflow automation during their simula-
tions in order to monitor the simulations, and in order to automate many of the
complex analysis which must take place from the data that is generated from these
simulations. Scientific workflows are being used to monitor simulations running
on these supercomputers by applying a series of complex analysis, and finally
producing images and movies from the variables produced in the simulation, or
from the derived quantities produced by the analysis. The typical scenario is
where the large calculation runs on the supercomputer, and the auxiliary diagnos-
tics/monitors are run on resources, which are either on the local area network of
the supercomputer, or over the wide area network. The supercomputers at one of
the largest centers are highly secure, and the only method to log into the center is
interactive authentication by using One Time Passwords (OTP) that are generated
by a security device and expire in half a minute. Therefore, grid certificates are not
a current option on these machines in the Department of Energy at Oak Ridge Na-
tional Laboratory. In this paper we describe how we have extended the Kepler sci-
entific workflow management system to be able to run operations on these super-
computers, how workflows themselves can be executed as batch jobs, and finally,
how external data-transfer operations can be utilized when they need to perform
authentication for their own as well.

Norbert Podhorszki
Oak Ridge National Laboratory, USA, pnorbert@ornl.gov

Scott Klasky
Oak Ridge National Laboratory, USA, klasky@ornl.gov

Norbert Podhorszki and Scott Klasky 144

1 Introduction

Supercomputer centers, like the National Center for Computational Sciences
(NCCS) at the Oak Ridge National Laboratory, have strict security policies. Users
have to login with a One Time Password (OTP), using an RSA SecurID token to
have access to the computers. Once the users log into the machine, they can edit,
compile, and submit their programs as batch jobs. If they want to check the status
of a running job later, they have to login again and run commands locally. In the
framework of the Center for Plasma Edge Simulation (CPES) project we have de-
veloped a workflow [1] that watches a simulation from a remote host, transfers the
simulation’s output on-the-fly to another resource where it analyzes the data and
creates plots from the data and archives the data. Another workflow [2] modeling
the complex multiphysics nature of plasmas in tokamak reactors, couples several
codes running on different resources and transfers the data among them, keeping
track of the provenance during the simulation.

It is impractical for our workflows to run on the supercomputers, since the
software infrastructure of the workflow is not supported on these machines, so we
run the workflows on a different machine. Therefore they need to connect to the
supercomputer regularly to access data and status information. Any authentication
is always performed interactively (i.e. the user must be present) and relies on
short-lived OTP expiring in 30 seconds. In section 2, we describe how the Kepler
scientific workflow management system [3] has been extended to be able to deal
with these workflows.

With the increase of the users monitoring their simulations with our “monitor-
ing workflows”, we need to run the workflows themselves on separate machines;
therefore we have to submit them as batch jobs on our local cluster to avoid prob-
lems. In section 3, we describe how these workflows that require interactive au-
thentication with the user, can be executed as batch jobs.

For transferring data from the simulation host to another host, external transfer
tools have to be used. Currently we must have a password-less authentication
method (host-based method or public-key method with a private key that has no
passphrase) to be able to run external tools. In section 4, we show how we have
extended Kepler so that it can provide a traditional password or passphrase to the
external tool that can establish its own connection using it.

2 Remote operations with SSH

A scientific workflow, which works with codes which run on supercomputers,
usually contains operations that should be executed externally to the workflow’s
own runtime environment. This is necessary because, of several reasons: they are
costly operations, their codes are available in another language, they must be run

Workflows in a secure environment 145

on another system, or the computation should be delivered to the (remote) data
and not vice-versa, or simply because the workflow has been built to orchestrate
the many operations on a set of hosts. The external operations can be realized as
jobs, which are to be submitted to a job manager on a remote host, as services,
which can respond to requests from the workflow, or as direct execution of pro-
grams on the local or on remote machines. In case of all remote actions, some
form of authentication is required.

The Grid Security Infrastructure [4] has been designed to allow users to “login”
once and use a certificate to authenticate the user to different resources and re-
peatedly to the same resource. However, NCCS and other supercomputing centers
and academic institutions, do not allow the use of certificates, requiring an OTP
for authentication which allows connections from outside computers only by SSH.
Because jobs must be submitted only from the supercomputer’s login nodes, a
workflow has to login to the machine first and then submit a job locally. Our goal
is to run and monitor supercomputer simulations, so we have extended Kepler to
use SSH to access such secure resources. Because of the OTP, the workflow has to
perform the authentication interactively with the user, unlike Grid infrastructures
where the workflow gets a proxy certificate ready to use from the workflow sys-
tem/portal, and the interactive part is performed prior the workflow execution.
Since the OTP expires in 30 seconds it is not feasible to ask the user in advance
and to store the password offline and then to start up the Kepler workflow on a
remote resource, which then would initiate a connection to the supercomputer and
use the password for the authentication.

By design, Kepler actors [5] are separate entities (Java object instances), so an
actor’s variables cannot be shared among other actors. We created a Java package
underlying Kepler that can keep the established connections open and can be used
by any actors in the workflow. There are ongoing developments for generic SSH
support for Java applications, like JSch [6] and Ganymed SSH-2 [7]. Kepler de-
velopers have already had experience with JSch, which provides support for all
kinds of authentication (except for host-based authentication), password, public
key, and most importantly the keyboard-interactive method used for one-time-
password authentication. JSch provides an interface to open several channels
within one established SSH session to execute different operations concurrently.
The org.kepler.ssh package is built on JSch to be able to share a connection
among different actors in a workflow. The identifier of a connection is the
user@host:port string, which is delivered either through links in the workflow
graph from one actor to another or through parameters given to all actors. This
Java package provides the following remote operations:

open or close a connection, execute a command,
copy files from a remote host to the local host, create a directory,
copy files to the remote host from the local host, remove files.

Norbert Podhorszki and Scott Klasky 146

A set of Kepler actors have been created that provide the above remote operations
in a workflow (SshDirectoryCreator, SshDirectoryList, SshExecuteCmd, SshFile-
Copier, etc). The SshSession actor opens an SSH session using this package. This
actor is used to let the workflow ask the user for password at the beginning of the
workflow run instead of at the very first remote operation at the given host. How-
ever, the underlying org.kepler.ssh package does not require the use of this actor
to explicitly open a session. Before any remote operation is started, it checks
whether the connection to the requested host is opened. If it is not, a new connec-
tion is established (and if necessary, a password prompt is displayed) before per-
forming the action. The connection is kept open until the end of the workflow run,
so that any actor can use it to perform its remote operation. Other Kepler actors
and a monitoring workflow are described in detail in [1].

The authentication is performed either through a pop-up dialog, if the workflow
is executed within the Kepler GUI, or on the standard input/output if it is executed
from command line, as usually our current users do it.

Futhermore, the org.kepler.ssh package implements all of the operations on the
local host with Java runtime, and all of the SSH related actors can actually per-
form operations locally, too. For example, if a host is named local, no SSH session
is established to the local host but local operations are performed. This makes de-
ployment of a workflow to a host, where many of the operations are to be per-
formed, simple by replacing the host’s name to local in one parameter of the
workflow.

An application of the above package is that the job-oriented actor set (that
submit and controls computational jobs as part of a workflow) in Kepler is capable
of submitting jobs to job managers (like PBS, SGE, LoadLeveler, Condor) of non-
Grid resources using an SSH connection.

3 Running workflows on a cluster as jobs

In order to become appealing for a wide range of users, a workflow system should
hide the hassle of workflow execution on a specific machine. The simple solution
is that the system runs the workflow locally on the same host; however, this is not
scalable on compute clusters with a limited number of login nodes. As the number
of users and workflow runs increases, the workflows need to spread over several
machines, since the performance of the workflows will slow down. We can main-
tain a round-robin scheduling of workflows on the login machines, but this is not
scalable: our workflow execution cluster has only 2 login nodes for 80 compute
nodes. The only scalable solution that we found is when workflows are executed
on the compute nodes of the cluster, which is managed by a job manager.

A Kepler workflow is basically a Java application, which can be executed as a
job without further investigation on the workflow cluster. The problem with run-
ning this as a batch job is that the workflow needs to connect to the simulation

Workflows in a secure environment 147

host with ssh and perform authentication with a one-time-password, i.e., it has to
have an interactive connection back to the user; which contradicts the concept of a
batch job. We have extended Kepler to support user interaction through a socket
instead of the standard input/output and have created a job submission script that
forwards communication between the user and the Kepler job as shown in Fig. 1.

The SshSession class of the org.kepler.ssh package has been extended to sup-
port a third type of communication to the user besides pop-up dialogs and
stdin/stdout. Through environment variables, a socket connection can be specified
for the workflow, so that SshSession establishes a socket to write/read when re-
questing the passcode to a secure host.

The other end – the listening party – has to be created as well. Since the users
currently just run a script to start the workflow and expect the communication
with the workflow through the standard input/output, we have created a python
wrapper script that

- opens a listening socket,
- creates the job script to be submitted (containing the Kepler workflow

and the socket information),
- submits the job and
- forwards all socket communication to the standard input/output.

Using this approach, the job submission procedure is hidden from the user, who
has the same experience as running the workflow locally. The workflow performs
the authentication at the beginning of its run, so the user can leave it after provid-
ing the one-time-password interactively.

Workflow site 1

Simulation site

Node 1

Node n

1)
co

nn
ec

t

2)
 au

th
req

7)
au

th
res

p

3)
auth req

6) auth resp

kepler.py

workflow

4) auth req

5) auth resp

Fig. 1 The steps of authentication after the workflow starts and connects to a remote host.
These steps are repeated for each remote connection.

Norbert Podhorszki and Scott Klasky 148

Currently, we are investigating the security flaw introduced by sending the pass-
code through a socket between two nodes of the workflow cluster between the py-
thon script and the Kepler workflow. We are also investigating how to support the
submissions of such workflows from a web interface, when the user is sitting in
front of a web browser at a remote desktop.

4 Third-party data-transfer with authentication

The monitoring workflow moves data from the simulation host to the processing
host. We designed this workflow such that it was able to run from a third machine
and orchestrate the workflow actions. Although the java ssh package in Kepler has
the capability to transfer files to and from the host where Kepler is running (and is
used by the workflow when jobs are staged on remote hosts), its performance is
insufficient to move large simulation data. Therefore, we have been using external
tools (SCP and BBCP [8]) to transfer the files. The requirement to be able to do this
has been always that those tools can establish their own connection in one direc-
tion without asking for passwords, which is a strict requirement that limits the set
of hosts that can be used for our workflow runs. In case of JAGUAR, the Cray XT4
supercomputer at ORNL, where the plasma fusion simulations are executed, the
administrators of EWOK, a small infiniband cluster where the workflows run, were
asked to allow host-based authentication from it, which was acceptable for them
because JAGUAR is in-house and is defended by one-time-password authentication.
In case of external systems, the user is asked to set-up public-key authentication
from EWOK to the remote host and to ensure that there is no passphrase used for
the private key (i.e. leave it defenseless on the disk on EWOK), which creates a se-
curity risk for the remote host.

We have extended Kepler’s external command execution capability with sup-
port for third-party authentication that requires a normal password or a private-key
passphrase to open a connection. This removes the security risk of the passphrase-
less private keys, and allows for password authentication and use of newer ver-
sions of GRIDFTP [9] and SRM-LITE [10] that can use the SSH protocol for estab-
lishing their own connections.

The first part of the extension is to watch the standard output of the external
program for signs of authentication requests, i.e. the appearance of words like
password or passphrase in the output stream, and to create a Java OutputStream
(in the Kepler code) connected to the standard input of the external program.
When the request for authentication is recognized, the password/passphrase is
printed to the input of the program. Since the request usually does not contain any
clue where the external program is going to connect to, the third-party host has to
be declared as a parameter of the workflow actor, which executes the external
program. Since the parameter can be updated (its actual value at the time of firing
of the actor is used), it is not a limitation for dynamic workflows that may choose

Workflows in a secure environment 149

a third-party at runtime. However, this means that the workflow must know in ad-
vance where the external tool is going to connect.

The interactive part of the authentication is performed by the Kepler workflow
at a well-defined point of the workflow (usually at the very beginning) or when
the request arrives as shown in Fig. 2. Kepler establishes a connection to the third-
party host itself and performs the authentication in the same way as it does with
other hosts. It then remembers the password or passphrase used for the authentica-
tion and sends it to the external program’s standard input. This means, that the
third-party host must be reachable from Kepler’s local host and the method of au-
thentication must be the same as from the host of the external program. This is
somewhat of a limitation because this technique cannot be used when the third-
party is not directly reachable from the workflow, e.g. when the external program
is to be executed on a proxy host between the workflow and a remote host. This
third-party support was not designed for such scenarios.

Kepler keeps the password in memory in order to feed it later to the external
programs. The password is requested and remembered by the SshSession class
while the external command execution methods that need the password are in the
SshExec and LocalExec classes in the same org.kepler.ssh package.

Workflow

Transfer
Tool

Site 1

Site 2 Site 3

1) connect
2) auth req

10) auth resp

3)
au

th
req

9)
pw

d

4) connect
5)

auth
req

8) auth
resp

6) auth req

7) auth resp

Fig. 2 The steps of authentication after the external tool connects to the third-party. If the work-
flow performs the authentication to Site 3 earlier (steps 4-8), than step 3 is followed by

step 9 immediately

The last part of the extension is to deal with programs that ask for the password di-
rectly on a terminal device instead of their standard input/output, e.g. SCP, or any
python program that uses the getpass module to ask for a password. When exe-
cuted non-interactively, no terminal is there for their use, so they fail if forced to
perform an authentication interactively. Pseudo-terminals have been always the

Norbert Podhorszki and Scott Klasky 150

solution to let programs believe they are interactive. OpenSSH itself provides an
option (-t) and similarly the JSch package provides a method Channel-
Exec.setPty(), to force pseudo-terminal allocation for the remote program. We
found two problems in Kepler in using this option. First, it has a side effect that
none of the user’s profile files are executed at login, and therefore we do not have
access to certain commands when connecting to the remote host. Second, Kepler
must provide the same functionality through LocalExec when executing com-
mands locally then through SshExec when executing the same commands re-
motely. Java has no concept of pseudo-terminals at all and the Java Runtime envi-
ronment cannot be forced to allocate one. Therefore, we have refrained from using
the above option for the remote connections.

Instead, we have created a small C program, which executes arbitrary com-
mands through a pseudo-terminal. It allocates a pseudo-terminal first and then
forks a new process that executes the original command. The master process for-
wards the standard input and output traffic of the command’s process between its
own standard output and input, respectively, which can be connected to the Java
streams in the Kepler execution class. When the command finishes, it retains the
exit code of the command and exits with this code. Therefore, this program is
transparent for both parties of the operation, although it is a compromise since it
has to be compiled and installed on the systems we are going to use in the work-
flow. There had been such programs in the past, like pty4.0 from 1992 [11], which
does not compile on today’s Linux machines, and special programs, like expect
[12] and empty [13] to control interactive programs from batch scripts, but none of
them could be used for our task.

The clear limitation of the above technique is that hosts with one-time-
password authentication cannot be third-parties in our workflows. Since Kepler
establishes (a) a Java SSH connection (inside JVM) (b) in advance (c) from its lo-
cal host, the connection or the retained one-time-password cannot be used by the
local/remote external program to establish its connection to the third-party. It is
one of our future tasks to design another way to support such hosts as well.

5 Use of the SSH actors in Kepler workflows

The methods described in the previous sections have enabled us to create various
workflows that can monitor supercomputer simulations by transferring their out-
put to another resource on the fly (as generated timestep by timestep) and by per-
forming additional operations like conversion, analysis, plotting etc. All simula-
tion and processed data are archived automatically on tapes by the workflow.
Users welcome the automation of the labor of post-processing, plot generation and
data archival, and this is the main cause for the acceptance of workflow technol-
ogy. We have been also developing a dashboard [14], which (among other func-
tions) allows users looking at the generated plots (i.e. monitor the simulation), see

Workflows in a secure environment 151

Fig. 3. Another workflow is used to couple two plasma fusion codes on two dif-
ferent supercomputers by using two other fusion codes as well to check the stabil-
ity of the simulation [2]. Another workflow has been used to transfer 10 TB of ar-
chive data between the storage systems of two supercomputer centers [15].

Fig. 3 Dashboard that displays movies generated from 1D and 2D plots of simulation variables
from the XGC plasma fusion code.

Without describing the workflows in detail, here we enumerate the operations that
were enabled by the development of the SSH actors in Kepler. First of all, the
watching for the simulation output requires regular listing of the output directory
of the simulation for new data. Keeping the connection (authenticated at the be-
ginning of the workflow run) open allows performing this regular directory listing
as well as executing external commands to transfer the data to the other resource
or perform conversion and plotting. The Kepler job actors use the ssh package to
submit and control jobs. Thus, in the monitoring workflow, we can submit an
AVS/Express visualization job on another node of the workflow cluster, wait until
the job starts (note that not until it finishes as usually job-oriented workflows do),

Norbert Podhorszki and Scott Klasky 152

send service requests to the visualization service whenever new data is available
for plotting and finally stop the visualization job at the end of the workflow run.

Data transfers between two hosts are usually performed with host-based au-
thentication inside NCCS but in case of the coupling workflow, we need to trans-
fer data from NCCS to another center where the second simulation is executed.
We have used passphrase-less public-key authentication originally but the third-
party transfer support in Kepler now allows users keeping their private keys on the
disk encrypted with a passphrase.

The capability to run workflows on the workflow cluster as jobs makes it pos-
sible for different users to run workflows at the same time and, as practice shows,
for one user to run several workflows (to process and archive several simulation
runs) at the same time without overloading the interactive nodes of the cluster.

The dual implementation of the ssh package to be able to perform the same op-
erations on the local machine allows for building a workflow once and deploying
it on different configurations. We use this feature to run the workflow under de-
velopment on a desktop for convenient development and debugging, so that it per-
forms all operations remotely including the processing steps, while the production
version runs on the processing resource with local operations wherever possible.

6 Conclusion and future work

In the past two years we have been extending Kepler with capabilities to run
workflows in an HPC environment where Grid certificates are not allowed while
the number of resources is limited. Kepler is able to establish SSH connections to
remote hosts defended with one-time-password authentication mechanisms, to
execute several commands at the same time and to keep the connection open for
executing commands later using our org.kepler.ssh package. The third-party data-
transfer allows executing external programs for efficient data transfer while Ke-
pler provides the passwords needed to establish the connection between the par-
ties. Now Kepler workflows are executed as batch jobs even though they ask for
one-time-passwords interactively from the user. This has allowed numerous sci-
entists working on the ORNL supercomputers to run monitoring workflows of
their simulation.

In the future, we will work on launching workflows from our web interface
[14]. We are going to make sure that users can type in their one time password,
and pass this through the web interface and over to the workflows. We are going
to design a secondary way to provide passwords to external programs from the
workflow as well, to enable data-transfer to hosts defended with one-time-
passwords and/or a proxy login host. ORNL will also be incorporating grid cer-
tificates for data transfers in the future, and we will modify the workflows to use
them locally, but we will still need to move data over to our collaborators ma-
chines, which do not support these.

Workflows in a secure environment 153

References

1. N. Podhorszki, B. Ludäscher and S. Klasky. “Workflow Automation for Processing
Plasma Fusion Simulation Data”, 2nd Workshop on Workflows in Support of
Large-Scale Science (Monterey, CA, June 2007), pp. 35-44

2. J. Cummings et al., “Plasma edge kinetic-MHD modeling in tokamaks using Kepler
workflow for code coupling, data management and visualization”, to appear in
Communications in Computational Physics special issue for the 20th International
Conference on the Numerical Simulation of Plasma (Austin, TX, Oct 2007).

3. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E.
Lee, J. Tao, Y. Zhao. “Scientific Workflow Management and the Kepler System”,
Concurrency and Computation: Practice & Experience, 18(10), pp. 1039-1065,
2006.

4. I. Foster et al., “A Security Architecture for Computational Grids”. 5th ACM Con-
ference on Computer and Communications Security, pp. 83-92, 1998

5. E.A. Lee and S. Neuendorffer. “Actor-oriented models for codesign: Balancing re-
use and performance”. In Formal methods and models for system design: a system
level perspective, ISBN:1-4020-8051-4, pp. 33–56, 2004.

6. JSch – Java Secure Channel. http://www.jcraft.com/jsch
7. Ganymed SSH-2 for Java. http://www.ganymed.ethz.ch/ssh2
8. BBCP. http://www.slac.stanford.edu/~abh/bbcp/.
9. GridFTP. http://www.globus.org/grid_software/data/gridftp.php

10. SRM-Lite data transfer tool. http://datagrid.lbl.gov/srmlite
11. Daniel J. Bernstein. pty4.0 from comp.sources.unix archive:

http://www.isc.org/index.pl?/sources/utils/terminal/pty4.php
12. D. Libes. “Automation and Testing of Interactive Character Graphic Programs”,

Software - Practice and Experience, Vol. 27(2), p 123-137, February 1997.
13. Mikhail E. Zakharov. empty: http://empty.sourceforge.net
14. S. Klasky, et al., “Collaborative Visualization Spaces for Petascale Simulations”,

accepted at 2008 International Symposium on Collaborative Technologies and Sys-
tems May 19-23, 2008.

15. Norbert Podhorszki, Bertram Ludäscher, Scott Klasky: Archive Migration through
Workflow Automation, Intl. Conf. on Parallel and Distributed Computing and Sys-
tems (PDCS), November 19–21, 2007, Cambridge, Massachusetts.

High-level User Interface for Accessing
Database Resources on the Grid

Tamas Kiss and Tamas Kukla

Abstract Data access in Grid systems and applications focused on managing flat
files only, until recently. However, many scientific and industry applications rely
on data stored in relational or other databases. The OGSA-DAI project developed
a widely utilised middleware tool that enables accessing and managing a various
database products through uniform Web service interfaces. As OGSA-DAI is a mid-
dleware level solution, it cannot be utilised by end users directly. Although research
projects have developed user interfaces for specific OGSA-DAI based applications,
these cannot be applied for more ad-hoc tasks. In order to fill this gap, a set of com-
prehensive and function-rich user interfaces were developed to expose OGSA-DAI
functionalities. The portlets can be used in a wide range of applications and enable
a much wider take-up of OGSA-DAI, as it is illustrated on the example of a data
mining application on a UK National Healthcare database.

1 Introduction

The Grid, besides facilitating the access to large computing power, also provides
capabilities to store and process huge amounts of data. Grid related research and
development activities mainly concentrated on systems until recently where data
was stored in flat files. Examples for widely utilised distributed file storage systems
in the Grid environment include the Storage Resource Broker (SRB) [15] or the
Storage Resource Manager (SRM) [7] protocol. SRB is available as a service in
several production Grids including the TeraGrid [20] in the US, or the UK National

Tamas Kiss
University of Westminster, 115 New Cavendish Street, London, UK W1W 6UW
e-mail: kisst@wmin.ac.uk

Tamas Kukla
University of Westminster, 115 New Cavendish Street, London, UK W1W 6UW
e-mail: kuklat@wmin.ac.uk

156 Tamas Kiss and Tamas Kukla

Grid Service (NGS) [21], while SRM forms the basis of the Logical File System
(LFS) [3] of the EGEE Grid [17].

However, many scientific and industrial applications rely on database manage-
ment systems to provide a more structured access to mass amounts of data. The
DAIS (Data Access and Integration Services) [14] working group of the OGF (Open
Grid Forum) is specifying generic interfaces to expose database operations in a Grid
environment. The aim of the group is to develop standards for providing consistent
access to existing, autonomously managed databases from Grid data services. Work-
ing together with the DAIS, the OGSA-DAI (Open Grid Services Architecture Data
Access and Integration) project [18] aims to develop a reference implementation
for the OGF specification. OGSA-DAI is a middleware layer that provides data ac-
cess, data management and data integration capabilities for various types of data
resources such as structured (relational) and semi-structured (XML) databases [2].
In order to support end-users, higher level tools should be built on top of OGSA-DAI
to provide the necessary level of abstraction.

Several research projects have utilised OGSA-DAI as their middleware-level
data access solution. For example, in the LEAD (Linked Environments for Atmo-
spheric Discovery) [5] project, that aims to improve the forecasting of medium-scale
weather phenomena such as tornados and severe storms, OGSA-DAI is the basis of
a metadata catalogue and provides a rich search space for end-users. Built into these
highly complex systems OGSA-DAI could fulfil its role by providing access to het-
erogeneous distributed data resources.

On the other hand, sometimes more ad-hoc access to databases is also desired
by individual researchers and smaller projects. The most important aspect in this
case is to provide database access utilising already existing tools and to avoid long
development processes. Unfortunately, the take-up and utilization of OGSA-DAI in
these latter scenarios remained rather low. As OGSA-DAI is a middleware level tool
it is not suitable to be used by end-users directly.

The end-user interface for Grid applications is typically provided in the form
of Grid portals [22]. The set of OGSA-DAI portlets described in this paper are
the first comprehensive set of end-user interfaces that provide rich and high-level
functionality to access generic OGSA-DAI services. Utilising this portlet set, users
can access databases exposed by OGSA-DAI, and can manage and manipulate the
data stored in these collections. As the portlets are implemented using the JSR-
168 [8] standard, they can easily be integrated to any JSR-168 compliant portal
framework opening the way for a much widespread utilization of the OGSA-DAI
middleware.

The remaining part of this paper is structured as follows. Section 2 reviews re-
lated work, while Section 3 describes the developed OGSA-DAI portlets in detail.
Section 4 illustrates the usage of the portlets based on a real-life scenario, and finally
Section 5 outlines future developments.

High-level User Interface for Accessing Database Resources on the Grid 157

2 Related work

OGSA-DAI is a middleware that provides query, update, transform and delivery
capabilities for a wide range of databases through web service interfaces. The latest
stabile release at the time when our portlet development started was OGSA-DAI
version 2.2. Therefore, the portlets described in this paper utilise this release.

OGSA-DAI exposes data (database or file) resources through a data service. Each
data service is capable to expose multiple data service resources each connecting to
a physical data resource. Data service resources are responsible for the execution of
perform documents and the generation of response documents. Perform documents
are generated by clients and describe a pipeline of activities (e.g. queries, updates,
data transformations etc.) in XML format. After executing the perform document
the service returns a response document that contains information on the execution
status and the ID of the session. It may also include the result dataset if for instance
a database query was executed. Graphical user interfaces to OGSA-DAI can be de-
veloped as either ’thick’ client applications, or as a portlet by following the thin
client approach.

An example for the former is the First Data Service Browser [6] developed orig-
inally by the First DIG (First Data Investigation on the Grid) project and then added
to future OGSA-DAI releases. This is a java client application that supports interac-
tion with various databases by providing a user-friendly interface to browse and run
queries on selected data resources. Although the client comes with rich function-
ality it has some disadvantages compared to the portlet approach. The application
requires installation from the user and does not integrate well with existing Grid
portal interfaces.

Portal-based interfaces to OGSA-DAI can be divided into two different cate-
gories. Large projects, such as the LEAD project mentioned earlier, has developed
application specific portals that provide access to large databases through OGSA-
DAI. These portals, for example the LEAD portal [4], do not provide generic
OGSA-DAI interfaces. Rather, they support their specific applications with low-
level OGSA-DAI services. As such, they cannot be utilized by other projects seek-
ing to expose OGSA-DAI functionalities through portlet interfaces. The second cat-
egory, where the portlets described in this paper also belong to, are portlets expos-
ing generic OGSA-DAI functionalities. Although some projects aimed to develop
reusable OGSA-DAI portlets in the past, they all provided only very limited func-
tionality and have not reached production quality. The Alliance OGSA-DAI Port-
let [11], for example, takes a perform document as the input and returns a response
document as the output of the operation. The portlet also shows query results in a
table format in case of relational databases. The OGSA-DAI portlet in a previous
version of the NGS Portal [24] allowed defining a query statement and then returned
the results in pure XML format. This portlet, due to its limited functionality, is not
included in the NGS Application Repository [12], the current version of the portal.
The Sakai VRE Demonstrator project [16] has also developed a limited functionality
portlet prototype with similar features to the NGS portal.

158 Tamas Kiss and Tamas Kukla

The set of portlets described in this paper are the only OGSA-DAI portlets that
offeff r rich functionality to end-users from database browsing to complex queries,
data delivery and transformation. This unique portlet set can easily be integrated
to Grid portals opening the way to easy utilization of OGSA-DAI functionalities
avoiding long development processes.

3 Grid portal interface for OGSA-DAI

When identifying the functional requirements towards the portlets, the aim was to
provide high-level functionality and abstraction for the user. All existing OGSA-
DAI portlets, as we have seen in the previous section, require the creation and in-
terpretation of XML-based perform/request documents. This level of abstraction is
clearly not convenient for an average database user. Our aim was expressing OGSA-
DAI operations through widely used database tools such as SQL queries, and also
providing user friendly interfaces for additional OGSA-DAI operations and trans-
formations such as data compression and delivery.

Fig. 1 OGSA-DAI Service Manager Portlet

High-level User Interface for Accessing Database Resources on the Grid 159

The desired functionalities can be divided into 4 main categories:

• Managing data services where existing services can be listed with their relevant
properties, services can be removed and new services can be added.

• A database browser interface where users can explore the content of available
services and resources.

• Executing advanced queries allowing data to be displayed on the screen or to be
delivered to a set of files for further processing.

• Updating the content of a database through queries or by delivering data from a
set of files.

The above described functionalities have been implemented as four different
portlets. The advantage of this design is the flexibility when integrating to Grid
portals and allowing administrators to select only the desired portlets. Functional
extension is also easier by developing and adding a new portlet to the set. Next we
describe the implemented portlets in detail.

The ServiceManager portlet is illustrated on Figure 1. The portlet allows adding
new data services by specifying their URL and the required security settings. Both
transport and message level (using Grid certificates) security can be defined. Select-
ing an active service will display its database resources and their allowed operations
(SQL query/update or XPath statement). In case of relational databases the table
structure can also be displayed showing attribute names, types and additional infor-
mation such as size, primary key, etc.

The DataBrowser portlet provides bulk data browsing capabilities. After se-
lecting the data service and resource, the whole content of an XML or relational
database is displayed on the screen, broken down to displayable pages.

The QueryManager portlet enables running queries on selected databases and
either displaying results on the screen or delivering them to a set of files via
GridFTP [1]. Figure 2 illustrates both options. The result of an SQL select query is
displayed in table format at the bottom of the figure. The output of the same query
is also converted into files and delivered via the means of GridFTP to a remote loca-
tion. The file can be compressed and the results can also be divided into several files
(in this example the results are divided into 4 files). Converting query results into
files and dividing them allow utilising them as inputs to single or parameter sweep
computational Grid jobs or workflows, as it will be illustrated in Section 4.

Finally, the ManipulationManager portlet, following a similar logic, allows the
user to run update queries, and also to convert and deliver a set of files from a remote
location to a database. Results of computational Grid jobs or workflows can this way
be converted and stored in relational or XML databases.

160 Tamas Kiss and Tamas Kukla

Fig. 2 OGSA-DAI Query Manager Portlet

4 The OGSA-DAI Portlets in Action

In order to demonstrate the usability of the OGSA-DAI portlets they have been
integrated into the P-GRADE Grid portal [10]. P-GRADE is a workflow oriented
Grid portal that enables the execution of parameter sweep workflow applications
spanning multiple Grids and resources. P-GRADE was built on top of the Grid-
Sphere portal framework [13] facilitating the easy integration of new portlets. The
OGSA-DAI portlets provide useful extension to this portal allowing users to query
databases, convert query results into files and feed them to parameter study work-
flows, as illustrated by the following example. The portlets are available within the
NGS PGRADE portal, one of the production portals of the UK National Grid Ser-
vice.

High-level User Interface for Accessing Database Resources on the Grid 161

The Department of Health in the UK releases annually its national database, the
Hospital Episode Statistics (HES). The HES dataset contains a seven financial year
period and approximately 80 million records in total, and forms the basis of a per-
formance rating framework for hospitals. In the context of profiling hospitals, using
the complete dataset is not practical. Therefore, a hierarchical cluster analysis is per-
formed to group all patients with similarities based on the shape of the cumulative
distribution function of length of stay (LOS) in the community before readmission.
Hence, a very large dataset is decomposed into clustered sub-groups of patients that
experience similar LOS. These clustered patient sub-groups are then sampled and a
rank value (based on the multilevel transition model) is assigned to each hospital in
every sample. Finally, the results coming from the different samples are aggregated
to give a final score. In order to achieve the desired level of accuracy the sampling
and ranking procedure is repeated many times, typically in the range of thousands
for a production run, and can take hours to complete on a single processor machine.

The HES dataset is stored in a MySQL database. The clusters are extracted us-
ing select queries and different proprietary algorithms, and provided in the form of
CSV (Comma Separated Variables) files for sampling and analysis. The analysis of
the samples uses R [19], a language and environment for statistical computing and
graphics.

The Grid enabled implementation utilises the independent nature of the samples
and runs the R algorithms on different nodes of a cluster or on several clusters in
the Grid. Each node receives the same input file containing the selected cluster of
data, randomly samples it and runs the R analysis program. The input data cluster is
extracted form the MySQL database using the OGSA-DAI portlets. The user runs
the required select queries or named procedures from the portlets and delivers the
results to a file. This file is then fed into a parameter study workflow. The P-GRADE
portal automatically generates the number of required sampler and analysis jobs
and distributes them on Grid resources [9]. Finally, a special ’collector’ job in the
workflow collects and aggregates the results of the analysis and stores them in a
CSV file. The application is currently running on the UK National Grid Service
utilising an OGSA-DAI service set up at Westminster, and compute nodes from the
Rutherford and Westminster computing clusters where the required version of R
application package is deployed. More information on this application can be found
at [23].

5 Future Work

The portlet set presented in this paper is the first comprehensive Grid portal-based
interface for the OGSA-DAI middleware. The portlets provide a function rich envi-
ronment for end-users to access and manipulate distributed data resources.

Future work is two-folded. On one hand, the portlets are migrated to the lat-
est version of OGSA-DAI, version 3.0. As OGSA-DAI 3.0 represents a significant
reengineering of previous releases, the portlets require substantial changes too. On

162 Tamas Kiss and Tamas Kukla

the other hand, the integration of OGSA-DAI to Grid workflow engines would also
significantly increase the usability of the tool. For example, the manual process of
data extraction described in the example of section 4 can be automated and the ex-
tracted data can be automatically fed into the parameter sweep workflows. Work is
currently ongoing to specify and implement this workflow level integration and will
be published in a forthcoming paper.

References

1. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.: GridFTP: Pro-
tocol Extension to FTP for the Grid, March 2001, http://www-fp.mcs.anl.gov/dsl/GridFTP-
Protocol-RFC-Draft.pdf

2. Antonioletti, M., et al.: OGSA-DAI Usage Scenarios and Behaviour: Determining, good prac-
tice, Proceedings of the Third UK e Science All Hands Meeting, pp. 818-823, 2004, ISBN
1-904425-21, 31st August - 3rd September 2004, Nottingham, UK.

3. Baud, J., et. al.: LCG Data Management from EDG to EGEE, In the proceedings of the UK
E-Science All Hands Meeting, 19 - 22 September 2005, Nottingham, UK, ISBN 1-904425-
534

4. Christie, M., Marru, S..: The LEAD Portal: A Teragrid Gateway and Application Service
Architecture, Concurrency and Computation: Practice and Experience, Volume 19, Issue 6,
pp 767-781, Oct 2006, John Wiley & Sons.

5. Droegemeier, K.K., et.al.: Linked Environments for Atmospheric Discovery (Lead): Architec-
ture, Technology Roadmap and Deployment Strategy, 21st Conference on Interactive Infor-
mation Processing Systems for Meteorology, Oceanography, and Hydrology, January 2005,
http://www.cs.indiana.edu/dde/papers/droegemeierIIPS2005.pdf

6. Graham, P.J.: First Data Service Browser User Guide, http://www2.epcc.ed.ac.uk/ first-
dig/DISSEMINATION/FirstDIGBrowserUserGuide.pdf

7. Gu, J., Sim, A., Shoshani, A.: The Storage Resource Manager Interface Specification ver 2.2
http://www.ogf.org/Public Comment Docs/Documents/2007-10/OGF-GSM-SRM-v2.2.pdf
Cited 9 May 2007

8. Introduction to JSR 168-The Java Portlet Specification, Sun Microsystems White Paper, 2003,
http://developers.sun.com

9. Kacsuk, P., Farkas, Z., Sipos, G., Toth, A., Hermann, G.: Workflow-level parameter study
support for production Grids, ICCSA’2007, (proc. in Springer LNCS), Kuala Lumpur, 2007,
ISSN: 0302-9743 (Print) 1611-3349 (Online) ISBN 3-00-011592-7, DOI: 10.1007/978-3-
540-74484-9 74

10. Kacsuk, P., Sipos, G.: Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal,
Journal of Grid Computing Vol. 3. No. 3-4., 2005, Springer,1570-7873, pp 221-238, DOI:
10.1007/s10723-005-9012-6

11. Kodeboyina, D., Plale, B.: Experiences with OGSA-DAI: Portlet Access and Benchmark,
Global Grid Forum Workshop on Designing and Building Grid Services, October 8, 2003,
Chicago, Illinois, USA.

12. Meredith, D. et.al.: A JSDL Application Repository and Artefact Sharing Portal for Hetero-
geneous Grids and the NGS, Proceedings of the UK e-Science All Hands Meeting 2007,
Nottingham, UK, 10th-13th September 2007, pp 110-118, ISBN 978-0-9553988-3-4

13. Novotny, J., Russell, M., Wehrens, O.: GridSphere: an advanced portal framework, Euromicro
Conference, 2004. Proceedings. 30th Volume , Issue , 31 Aug.-3 Sept. 2004 pp: 412-419

14. Open Grid Forum Data Access an Integration Services Working Group (DAIS),
http://forge.ogf.org/sf/projects/dais-wg

15. Rajasekar, A., et. al.: Storage Resource Broker - Managing Distributed Data in a Grid, Com-
puter Society of India Journal, Special Issue on SAN, Vol. 33, No. 4, pp. 42-54, Oct 2003.

High-level User Interface for Accessing Database Resources on the Grid 163

16. Sakai VRE Demonstrator project, http://acet.rdg.ac.uk/projects/vre/index.php
17. The EGEE Web page, http://public.eu-egee.org
18. The OGSA-DAI Website, http://www.ogsadai.org.uk
19. The R Project Website, http://www.r-project.org
20. The TeraGrid Website, http://www.teragrid.org
21. The UK National Grid Service Website, http://www.ngs.ac.uk/
22. Thomas M.P., et. al.: Grid Portal Architectures for Scientific Applications, Journal of Physics:

Conference Series 16 (2005), pp. 596-600, SciDAC 2005, doi:10.1088/1742-6596/16/1/083
23. W-GRASS (Westminster Grid Application Support Service), http://wgrass.wmin.ac.uk
24. Yang, X., Chohan, D., et.al: A Web Portal for the National Grid Service, In the proceedings

of the UK E-Science All Hands Meeting, 19 - 22 September 2005, Nottingham, UK, ISBN
1-904425-534

V
MISCELLANEOUS GRID-RELATED ISSUES

��������	
���
�
���	���	����
���������	
�������
����

����	
�
	
���
��������������
���

��������������	
�����	��	��	
�!��	#��$�+�<�
	�
	��	������>
�Q�\�

	�^�

���	���	��� $	����	� �_	� ������	�� �_��� _��	� �		�� +��	� ��� �
��� ���	�����	� ����
���������� ��
�_	
� 	���
��� �
	� �		�	�� ��� 	���
	� �_��� �_	�
	���
	�� �	�	�� ��� �	
���	�
�
	����������`������_�	�	�{���
�����	��
	���
	�����	����	�������	��	�����`� �_��	����
�	����
	���	������_	�	���������������	�������	
���	���������	��}��_��_	���+����	���
�
���� �_��� �_	�	~	������������ ���Q��
����	����������+	�����
�����}��_� ����	~�	����
���	� �	_�����
{� ��� �_��� ���	
� }	� �
	�	��� �� �����
����� ���
���
����
	� ��� 	����	�
�
������������������Q�	��_	����Q������������
�	������������
���	�������	
���	��������
��	�{������������`��}	��	��
��	������	�����`��_���������
��	���_	�������������`�����_	�
�
����	�� +��	�� ��� �	�	
�����
���	� �	
���	� +����	+	��� ����	�{� _	� +��	�� _���
�		���	��	�����������
���	��	���
��+	���}��_��
�+������
	�����{�

^���	�����	
���

�
��� �	�_������	���
	���� �_	� ���� �	�	����� �_	��
����#����������	+��� ����	��+	�
����	��`�����}���� �_	�����
���������������������� ������ �
�+� �	�_�����`{�_������
�
���_� ������	�	���+	��� ���
	
���	��
�	��	���
�_��	���
	��
����}��_� �_	�������`�
������	�������
+�������	�_�����`��	���	������	
���	����	
����	�}�
Q{�

$	����	� �_	� ������	�� �_��� _��	��		�� +��	� ����
��� ���	�����	� ���� ����������
��
�_	
�	���
����
	��		�	�����	���
	��_����_	�
	���
	���	�	������	
���	��
	����������`�
��� ��_�	�	�{�������`� ���
	
���	� ���
�� ����	��
	���
	� ����	� ���	������� 	��	�����`�
�_��	����	����
	���	������_	�	��������������	
���	���������	��}��_��_	���+����	���
�
���� �_��� �_	�	~	������������ ���Q��
����	����������+	�����
�����}��_� ����	~�	����
���	��	_�����
{�

��� +������� �_	���

	����	���`+	�������	
�� �		� �_	��
��� �
�+� �_	�������	���� ��
�����Q���~�� }_	
	�
	��	���� ��� ��� ����
	�����	�� ��+	���������� �_	`�������� �		�
}_���������	��}_	����+	�_����������	����
����
���		�����_��������Q������������	�����
��	
��	���	����
�
	���
	+	���{���
�_	
+�
	����	
��_��	����+	������
���	���`����
���	��
	����
����
����	{�

�� �������������������
��������������	
�����	��	��	
�!��	#���{�$�+�<�
	�
	��	������>
�Q�\�

	��
��������	� ��
� �_	� ������������� ��� ������	�� ����
+������ ���� ��++���������� \	�_������	��
��\���������`�	�_��������	
���`�������	����������������+�����	��	
��
�������������	������

������	�+�������������	���_	
����������{���{	����	��

	�����������������{���{	��

168 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

_	����	����	���� �_������	
� ��� ����
	�	����� �����
����� ���
���
����
	� ���	����	�
�
������������������Q�	��_	����Q������������
�	������������
���	�������	
���	��������
��	��}��_��_	���+�����
��������
	����������`����
������	���
���{�

_	�
	������ �_������	
� ����
����#	����� �����}�{�
	������ ���
	�	������ }�
Q�����
���������� +��	�� }_��_� ���������	�� �_	� ��+������	������
�
	���
	+	���� ����
��{�

	���������	��
��	������
�_��	���
	��+��	+	�������_	�+��	�{�
	���������
	�	������

	��	}�����_	�
	���	��}�
Q�{�������`���������������������
	�}�
Q���
	��
	�	��	�{�

�������������������
������������

����
����	�� }�
Q��������������� +��	�� ��
�
������	���
�����
����	���� �	�����
��+���	���� ���� +	�_����+�� ��
� ����������� �	
���	��� ����
�	
� ��� 	~	���	� �_	�
	�
��	�������+���	���`��_	����	����}��_��������+��������#����������_	�
	���
�	�{�
��_���
+��	��+������������_	�
	�������_	���+���	��������_	��
���}��_��_	���+���������������
�_	��	
���	� �	�	�����
		��}��_� �_	����	�������� �_	���+	� ��+	� �_������
���		� �_	����
��+����_+	�������_	��	
���	��
����	
�������	�{�

_	�}�
Q���������������+��	���
	�	��	�� ��� �_������	
� �+��	+	���� ���
�+���
�
����	���{���
��������	���	������+��	��	�����
	
���	��	�	����������
���
���{�
	�����`��
����	���	�����	�����+	���
���	���
���������
���_��������	���	���`����	��������������	�
�_	�
���
�
	���
	+	���{�_�
��`�� ����	���	����
	
���	��������	
��	���_���������
��
}_��_��	��
��	���_	�}�
Q���������_	��	
���	��������	
�������`���+	������������`�����
�	���	����}�
Q���������
������������
��_+��}_��_������	���	������������	��	
���	��
��
�	~	����������Q���_����	+�������	��������
��	{�{����	�����	�{�

������������������	
����
�������	��

���	�����
���	����	���_	��	
���	��}��_���+	������
�	~�
	�������_	�
���
������������
��� �_	� }�
Q�������������������
��_+����� +���_� �_	����	���
	��	���� }��_� �_	� �	
�
���	�{�_
���_��_	�	���������
����_	��`��	+�����	
	�����	���_	��	
���	��������
�����
}��_���+���
��	
��
+���	{�

_	�
��������	������	���������	
	���	�����	�{������
�+��	���}	���+����	������	�
�_	���	
��������_	��������+��	+	�������������������	
���	����_	�
	
���	���_	��
����
���	~�	
����`�������	���	
������������
�	���`����
����	
���	����_	��������`���������
������������}�
Q���+��	�	���`�������	����������	
���	������� �_	�
	
���	��
����	
�
��_	��
����#�������_����
����	�������+	
�����	�������_	��	
���	��������
���{�

_��� ���	��
��������	
	������������ �_	�	�����	�� ���������	�� �_	��_�
���	
�#���������
�_	��	
���	���������	
	��� �	�	����}��_� �_	���+�����
����������	
������
	���
�	����
+�����
���
��}��_�����	~���	��
�+	}�
Q���
��	����������	�����������_	��	
���	������
�	�	
+�������_	��������	����������������
	��
����}����}�{�

_	�
����	���	�������
�+��	���
	��	��
��	������_	�\���	��{�

A supporting infrastructure for evaluating QoS-specific activities in SOA-based Grids 169

������^����������������	
����
����	
�������������
���	
����
��{�

��+�� $��������
	� ��������������+�� �����������>	���`�
�����������`�$����������_�������������`�
��

�	��	���`��������`����	�����
�
�`���
�
�����
�������{�

_��	�+����
������������
+�����
�
����������������+����
��
���_���
����
��+���_����	��	���`�������������{�

����������������`��
����������
��
��{�

����
	���
\�+��

�����	����	
�����
��`��_�����
�������
��	���`�����_���	
�
��
���_����������~�����
	{�

_����+�������Q����
��	��	���`��
����
��
	
������������	
���	
������
��
	����
��_�����������{�

�������
	��������
��`{�

_�
��_����$���	
��
	��_���������{����
�_
��
����+������
��`�
�
��
����
����������	
���~�
������{�

_��	�+����
����������	�����������
�
+�����
�}��_�	�����+�����+�{�

�������
	������
�������������`{�

�������`� �������`���������_
��
����
�����
����}��	��_����������
��	����	
���
������
��
��_��
����������
��
���{�

����
��
����+��������	��}
�������`�
��������������������
��
���+�
��+��
}{�

�������
	������
�������������`��
����������
��
��{�

�����������������	�
��
�������

������
���	
����
����~�������`�
����	����_����������
	��_��������
���_�����
��
�����
�����{�_�
��_� �_���� �	
����
����������	������������ �_���
���������+�	���
��_���
��
_������������
	{�

_���
�� �	
����
�������
�������
� �	� �_��\������{�_��+���������� ���+���
�	�
��
��}��_��_
������
��	��_�������
	��{�{�

����	���
��������
�����������
��
������

��������� ���� �
++
	�`���
���
� �	� �������� �
	���	���{� �
��
����� �_�`� �_���� �_��
���
������
�� �� �������� �� �`���+�� �	
� ������	��`�
�� ����������#���
	������
�+{� ���
��
����������������� �	
����
�����	`�+

���
����	��}��_��
��	��
���
���Q���	�
����
�
�	�� �_�������������`��	
� �_�� �
�
�
�� �_���	
���`�	�� ���
�����{�_�� ���
������
��
�_�����������
	���	�����Q��������	��_���~�����
	�
������`��������{�_���
	
���
	�
��
�_�������
������+�������+
	��
��
��	
��	�������
��	��_��}
�Q�
�
�����	��	�����
�
���_+����	�
�
����
����
���������������	���+
�������������}�`{�

�	��_���}
�Q��}��_�������
��_����	���
	����
�
��
��	�������{�

������������	�
���������
���������������

_�� }
�Q�
�
�
���������
	� ���
���_+�
����+�	��� }_��_� �������� �
����
���
�� ����
��������~�������������	���������{�������
	�����}
�Q�
�
�
���������
	���	��������
�

170 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

�	���������������
	�
���_������������	�
���	
�	�`��
��_�����
���
��	��
�������������
�

����������������� ��������	
� �
���������
��
������
�}��_�
�_������Q�{��	��_����������
}��������
�
��	������������	��+��_

��
���������`�	���_����������� �	��_������
����

���
���������	
�
������
���_���~�����
	�
���������{�_���_������
����
����	
�
����
������������������
����
}��

• ������������
	��`����
���
��
� �
��~������ �_�����������
+��`�	��}��_� �_���
��
�������+�	�����������
	��`����
���
��
��
����+
���`�
������
�}��_�
�_������Q�{�

• ������������
���
��
� �
��~������ �_�� ���������
+��`�	�� }��_� �_���
�� ��������
+�	�����	
����
���
��
��
����+
���`������
���
�
{�

• ���������Q	
}	� �
��~������ �_����������}��_
���+����	�� �_���
���������+�	���

���_������������������
	��`����
���
��
��
����+
���`������
���
�
{�
�

Align

Return (SA, offer)

Cluster

Weight

R0, R1, …, Rn
S0(SLI0, SLI1, …, SLIm)
…
Sp(SLI0, SLI1, …, SLIm)
dim(S) = m

S0(SLIx, SLIy, …, SLIz)
…
Sq(SLIx, SLIy, …, SLIz)
dim(S) = n, n � m
SNA = {Si, Sj, …, Sk}
SVR = {Sr, Ss, …, St}

{c0, c1} = doCluster({S0, …, Sq}, 2)
{cprim, cbkp} = sortClusters(c0, c1, criteria)
cprim = {Sa, Sb, …, Sc}
cbkp = {…}, dim(cbkp) = dim(cprim) / rate
cslow = SNA U SVR

Allocate

H0, H1, …, Hu cprim = {(Sa, Pa), …, (Sc, Pc)}
cbkp = {(…), …}
cslow = {(…), …}

i = 0, offer = false
While (SA == null) & (i < 3)

SA = getService(ci, PThredshold)
i = i + 1

EndWhile
If (SA == null)

SA = getService(c2)
EndIf
If (i > 1)

offer = true
EndIf

Align

Return (SA, offer)

Cluster

Weight

R0, R1, …, Rn
S0(SLI0, SLI1, …, SLIm)
…
Sp(SLI0, SLI1, …, SLIm)
dim(S) = m

S0(SLIx, SLIy, …, SLIz)
…
Sq(SLIx, SLIy, …, SLIz)
dim(S) = n, n � m
SNA = {Si, Sj, …, Sk}
SVR = {Sr, Ss, …, St}

{c0, c1} = doCluster({S0, …, Sq}, 2)
{cprim, cbkp} = sortClusters(c0, c1, criteria)
cprim = {Sa, Sb, …, Sc}
cbkp = {…}, dim(cbkp) = dim(cprim) / rate
cslow = SNA U SVR

Allocate

H0, H1, …, Hu cprim = {(Sa, Pa), …, (Sc, Pc)}
cbkp = {(…), …}
cslow = {(…), …}

i = 0, offer = false
While (SA == null) & (i < 3)

SA = getService(ci, PThredshold)
i = i + 1

EndWhile
If (SA == null)

SA = getService(c2)
EndIf
If (i > 1)

offer = true
EndIf

Entities:
R: QoS Requirement.
S: Service.
SLI: Service Level Indicator.
c: Cluster.
H: Service Container Health Indicator.
P: Predisposing of a service to deliver
a service level, affected by the service
container health status.
SNA: Non-allocable services.
SVR: Services violating requirements.
SA: Allocated services.

Processes:
Align: Match the client requests with
the services in terms of QoS.
Cluster: Classify the services in three
groups of possible candidates for the
execution of tasks.
Weight: Affect the clusters with the
service container health function.
Allocate: Assign the most appropriate
service for executing a request.

Entities:
R: QoS Requirement.
S: Service.
SLI: Service Level Indicator.
c: Cluster.
H: Service Container Health Indicator.
P: Predisposing of a service to deliver
a service level, affected by the service
container health status.
SNA: Non-allocable services.
SVR: Services violating requirements.
SA: Allocated services.

Processes:
Align: Match the client requests with
the services in terms of QoS.
Cluster: Classify the services in three
groups of possible candidates for the
execution of tasks.
Weight: Affect the clusters with the
service container health function.
Allocate: Assign the most appropriate
service for executing a request.

�

�
���^��
�Q�
�
�
���������
	����
���_+{�

_��}
�Q�
�
�����	��	���
	������ �	��������	�� �_��+
�������
��������������� �
��
�~�����	�������������	����_���}�`��_����_����������	��
���_���
���������+�	���
���_��
����������������������������
��������_������
�+�	���
���_��}_
����`���+{�

_��
���������	��
�����
	�
���	
��
	� �_�� �������� �������+�	����	
� �_�� _����_�
�������
���_�����������
	���	���{����������}��������`������`������	�
��
��_�����
	��`�
���
���
��
�����������
�+�����_���
���������+�	��{�\
�
����}��_��_�����_��
�����
	�
���+

�����
��`� �_�����������
	���	���_����_���	���
	{�_��+
������������� �������

���
��
��
����
������
�}��_�
�_������Q����_��+
����_��_����_���	���
	�}������	���
�#���_���������
	�
���_���������������_��_����_��������
���_�����������
	���	�������	���
�
������{��	����_���}�`���_������������	��_����������������}��������_�����+��`��
�����

�������������
����
	��}_�������_������������	��_�����
	
���������}��������
�+������
���Q����
���_������������	��_���������������{�_������������	��_���_��
���������}�������
�������
�
	�`�}_�	�	
�
�_����
��������`��~�������	
���}�`��}�������
�����
��	����
�

A supporting infrastructure for evaluating QoS-specific activities in SOA-based Grids 171

�����
����
{�_���������
	�
��
	����������
���	
�_����	��_����+����������
�������	���
��	

+�`� ���_�
	�����
����#�	�� �_
��� ��������� �_��� ���������� _����_�����������
}���
���
���	�
��_���_
�
{�

_����������������	�����
�����+� �
�� �_��}
�Q�
�
�
���������
	����
���_+{�_��
������������	��_�����
���_+��
	�������	�����	�	���_���������+�	���
���	��	�
+�	�����
������ }��_� �_�� ����
������ +
	��
��
� �	� �_�� �`���+{� _�� ��������� �������	��� �_���
����� �	� �_�����
���_+�}��_� �_����
�Q����������� �_�� �	
�	�� �_������
�{������� ��Q�����
����	
�����	��
����
�+�	����	����+��
�~�	����
�����������������������������+�	����	��

�	��
�����	�}�+����~�}��_� �_�������
���
	+
�`�	��}��_� �_���������+�	��� ��
� ����
������	���}	���
�	���}��_��_�������	���_�������
���������	������{�_���������+����~�
��������+�����+�	������������		�����_���	������+����~{��	��_���+����~���_��
	��+	��
��
����	��	�������������������� ���� �������� �_����	�		��+��
��	`��������+�	�� �	� ���
��������
�	� ��� 	
��		���`� ��+	���{� _�� �����
��� �_��� �	� 		�� _���� ���� �_�� �����
	������ �	� +��
� ��� �������+�	���������	�
��� �	� �_����
�	�����{�_���� �����
���
}�������������������			����	
����������
��{��	��_����+��}�`���_�������
����_����	�		��
+����		��	��+	����������+�	���������	�
��� �	� �_����
�	�������	��
�����������
���
��	����	���������+�	��{�

�	� �_�� ��
		�� ���
� ���
����	��������������� �	� �_�� ����������� �_�� ���������	���
��	���
�����	��_��������������
��+	�`���
�������	�Q�
����������	�����}����	�
�{�

����������	���������_+�����

���������_������������_���+�����_���������+�	������
�_�����������	������������	���_��
��+��`��	�����Q�
���������{������_�������	���Q�	�
����_��������	����������_�����������	��`�������������	��	��������
�{��	��~����
�����
���������}���_���������_+�����	�+��������`���

���	���������}��	��_���}�����������
���	�������	��	��������
�{�_���+
�����
��_����������	���������_+��	��_����

���	����
���	�
��������� ��� }���_���� �_����_��� �����	����������	� ���
����	��������	���	��� �	�
�_�����������{������	���	����}_�	��_��������������������������	��`��������_�����������

��������	���� �_��+�����

��
�������������������~�����	������������}��_�	��������
��	��� �_���������	� �������
����������`��	� �_�� ���
�	��� ��+���	���	� �_�������������`�
�	�����������	���_���	����	�������_����_����	���������������_���+�	�+������	���{�

������}���_����+�	���	��_����_��	�+����������+�	����	��_��
��+��`�����������	�
������������`��������������Q�
���������� ���
����	������������ �	� �_������������ �	�
��������������	����������	���	�+����������+�	����	��_�����Q�
��������{�

_��	
��
���������������+����`��_���	��	�����_��	�	��������������������}��_��_��
����������������	���������+�	��{�

�	��_���_�������
����
����	���������������	��_���������������������������������`�
�	��~������� �������������� �������_��������� �	� �_��
��+��`��	�����Q�
���������{� �	�
�_������
���_����������	���	���+����	����}���_�����������	��������������	��	�������{�
�� �������+� ��Q��� �	��� �����	�� �_�� ������ ����� +������� ��{�{� ���� �����#����	��
����������+�+��`��	�������������
�����	����Q������_������������	���	�����	����������
Q	�}��_�����������������������`��	��
�����+�	��{�

�_���������_����_������
�������+
����	����_������
���������_�����������	������_��
��������� �	� �_��
��+��`��������� ��_�����������}��_� �_�����������{�_������
�+����
������ �_�����������	��������	��`� �_������������	���	��� �������	�����	{�_��+������
�������� ���
�����
����� ����������
����}��_���_��� ���Q��� �_��+���� �_������������
�

172 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

}����
�	���#���_����������	�����_����������������_�����������_������������	���	�������	�
����������{�

_����������
�����_�����������	����������������
����	�����������������	��_������
������{������	�������	���������	�������������	��_��
��+��`��������{��	�`�}_�	��_����
���	��
���������`������������������������	��_��
��+��`���������������������������������
�	��_�����Q�
��������{��	����_���}�`���_������������	��_��
��+��`���������}��������_��

��	��
������������������������������	��}_������ �_����������� �	� �_�����Q�
���������
}���� ��

���� �_����������� �	� �_��
��+��`��������{�_����������� �	� �_�����}���������
}�����������������	�`�}_�	�	����_���
���������`��~�������	����}�`��}���������������
�	���������������������{�{��_��
���������	���������_�������{�_����������	�����	������
���������	��_����	��_����+������������������	�����	��+����_��	����������������{�

���_� �_����+�����	����	�� �_��� �_��
�������	�������������������	��� �+
�`� �_���
�_�� ������������������	� �	� �_����	���	���
�	���#��� �_��
�����+�	��������_���
����
�������	��_����+����	���	�����	�`��_�������������
��`����	�����������	���	����}_��_�
����������	��������������}�����_���_������������������`�����	��������_�������������
������	����������������������������{�

_��
��������������������	��_���������	�}���������
����������`���+���������������
+������	�� �_��������� �_�� ����� �	���������_��� �������
�����{����� �_��� �����	�� �_��
���������	��`����
������
��+��`��+
_������	��
���{�

������������������������
�	�
��	
�������
	��	����

���������
����	��������	�����}_��_��������������_����������_��}��Q��������������
���	� ���_���������
����	���� �	� �_���
�
��� ���� ��������	�� ������������ ���������	�
���Q{��	��_���
��	�������������������������_�}��_���������������_������_�����������������
�
����+�	�����_�������������+�	������������������������	��_����{��������_�����_��
�������������� �	������������ �_����������������~
���	�����	�� ��	���`�_�}����������	�
�	�������}��_��_�����_����������	�������������+�����������+�����

��
��������������{�

��	� �_�� ��
� ��������	������ �_�� �����������������+�	�������������������������

���������
�����+�	�� ���� �_�� ������������	�� ���+���� �_������+�	�� ����	����� �_��
���������
������`������������ �	���+����	��	����	���������	������	����������� �	�
�_����{�_������+�	���
���������� �_���_���� ���� �_���~������	� ��+����� �_���
����
���	��� �~
����� �	�� �}_��_�+�����������������`����� �+
��+�	�����	����������

��`����`��	`���������
���������	��_�������	���������������	�������������������	�
���	��{�_������+�	�����������	��� �_�� �	
����	�����
���������� ���� �_�� ����� � ��
}_��_����������� �_�������������`���� �_�� ��������� ���	������������ �_�� ������� �	� �_��
����}_��_� ��� �_������������������	�����	�����	�� ��!"��� ����+
�	�	����� �_��
����	 �����_����+��	�}_�����_���	���	�������������
��`��{�

���������������������#�������������������������������{������
��`���	��+
���
+�	�����	������ �	� �_������������	���	��� ��	���	� �_����+��	�$���	�� �_����������
��	���+�	���`���+���"�����
��`��� �	� �_����+���	������������ �_������������ ���
�_������	�����_����+��	�${��	�����}�����	�����_���!"�����	������_������	���	��

A supporting infrastructure for evaluating QoS-specific activities in SOA-based Grids 173

�_������������� ��	��_��������������	��������������_��������������_�����������_������	�
�������������_������}_��_��
�������_���"���	��_������+��	�{�

�	������	������������_���~������	���������Q��_����	��������_���
������	����	���
���������{�_������	���
����������������������������+�	������}_��_��_����������
���
�������_����������	�������� �����~������	{�_���"�� �_������������ �_�������������+�
�_������	���~���������}��Q���������	��	���������_+� ������������	������������������
�_���~������	���� �_�� ���Q{�_����������������>��������	����	�� ��!$������	�� ���
�_���"��
���������	����������	���� �_�� �	���	������� �_������������ �	� �_����{�_��
�!$��������_�������������������������+��_������	��	�����������������_���
`�����_��
����������	���	���_����_���������	���+����	�����_�������������	�����	��	���+����	�
�`���+��#	���{�

��	���`���_���"����	��������
�	�������_������	����	������	���_���	�
��	������	���
�	���	����_������������������`��_������	������~�������_�����Q���	���
����`�	��}_��_�
����_���	���	�������������������������_��������������������+�	��������	��{�

�

SC

SMS S

<QoS-State />

ARSIC

PCIS

<QoS-State />
<QoS-Req />

SLMA

SLEA

<H:Health />

<T:Test />

O O1 … On

<QoS-State />

Domain D

Domain X

ARSIC SMS

<QoS-Req /> <QoS-State />

<QoS-State />

<QoS-Req />

<QoS-Req />

VO
Administrator

User

<R:QoS-Req />

<S:Endpoint, Offer />PCIS

<H:Health />

<H:Health />

SLMA

SC

SMS S

<QoS-State />

ARSIC

PCIS

<QoS-State />
<QoS-Req />

SLMA

SLEA

<H:Health />

<T:Test />

O O1 … OnO O1 … On

<QoS-State />

Domain D

Domain X

ARSIC SMS

<QoS-Req /> <QoS-State />

<QoS-State />

<QoS-Req />

<QoS-Req />

VO
Administrator

User

<R:QoS-Req />

<S:Endpoint, Offer />PCIS

<H:Health />

<H:Health />

SLMA

Service Management System (SMS): Monitors
the services in a producer/consumer pattern.
The services use the SMS as the entry point to
the architecture, subscribing their QoS
requirements to the SMS. After that, the services
and the monitoring systems produce SLI status
values that are consumed by the SMS.
Active Repository of Service Information and
Configurations (ARSIC): Keeps historical
record of service level indicators for the services
of a VO, and updates all the SMS of the VO
when a service changes its condition.
Additionally, manages the configuration of the
services.
Provider Condition Information System
(PCIS): Keeps record of the “health” status of
the service containers of the VO.
Service Level Monitoring Agent (SLMA): This
agent is a monitor used both in the SMS and in
the ARSIC. The SLMA can acts as tester,
running tests in the services and collecting QoS
conditions, and as observer, receiving
notifications from the services.
Service Level Evaluation Agent (SLEA):
Evaluates the QoS condition of the services. It
works at the SMS, evaluating the SLI and the
“health” of the service containers.

Service Management System (SMS): Monitors
the services in a producer/consumer pattern.
The services use the SMS as the entry point to
the architecture, subscribing their QoS
requirements to the SMS. After that, the services
and the monitoring systems produce SLI status
values that are consumed by the SMS.
Active Repository of Service Information and
Configurations (ARSIC): Keeps historical
record of service level indicators for the services
of a VO, and updates all the SMS of the VO
when a service changes its condition.
Additionally, manages the configuration of the
services.
Provider Condition Information System
(PCIS): Keeps record of the “health” status of
the service containers of the VO.
Service Level Monitoring Agent (SLMA): This
agent is a monitor used both in the SMS and in
the ARSIC. The SLMA can acts as tester,
running tests in the services and collecting QoS
conditions, and as observer, receiving
notifications from the services.
Service Level Evaluation Agent (SLEA):
Evaluates the QoS condition of the services. It
works at the SMS, evaluating the SLI and the
“health” of the service containers.

�
%
���&���}��Q����������������	��~�+
��{����`�����}����
����	���_�����}�����_��������_����_��_��
���_����������	������Q�����}����
����	������������	��������	�_�
�{�

�����������������	
���
���
�������������
���������

_�� ����Q� ��� ��+
�	�	��� ��� �_�� }��Q����� ����	��	�� ���_��������� ������������ �_��
��_����+�	�� ��� �����
������� +�	���+�	�� ����������� �	� ���������� �����{� _��
������������������������
��`����`�������������	���	��{��	��_���}�`���_��������	�
������������	���	����������	����������_���+�Q��
������������_��������#���������������
�_���	�
��	��}��_��������������{�

����������������������������������}��_�}_��_�����_������_������������	���	��{�
_������������
������_����_������	��}��Q��������������������_�������������_�� �	�
���+����	� ���� �_����{�>��_�����Q��
������
`���� �_�� �������	�����	���������� �	�

174 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

�_�������	���_��������Q��
��_�������������������������+�{���������	Q���_������
�������������_�������	��Q��
���_�+��
������}��_��_���������	�����	����	{�

$�
�	��	���	� �_������ �_��������#����	� +���� ���� �� �
������� ��������� �_�� �����
����	��	����_�������`��_��������	�����������������������������������	��_���������
�_���~������	���������Q���	������_�����������
�����������_��������	����+�	����_���{�

��������������	����������	����������`��_����������
������������+�	�����	��
�_����������{�_����������	�������������������������	�����}������������_��Q�	���_��
�	������`�����_���	���	�����
�	��	���������_����������{�_�����	���������	����}_��_�
��� �_���������	���`���+�� ��������	���� �������� �	��������������_��������	� ������_���
��	����_�����	��������������}��_��_����

����_{�

_����
������`���������`���+� ������������	���	��+�	�����	���������� ��������	�
��������������
������������~�+�	���
����������������������������	���	����������_����	�
�������
������	������	� �����{�_�����
������`� ����	_�	�����`� �_��������_����_������
��	������������_�������������������_���`��_������������	���	��{�
�	��_����_���_�	����_��_�����������	���+����	�Q�
������_����������������������

������������	���_�������#����	���������������	��_����{������	���	�����_��_�����������	�
���+����	�����������������������������_��
�`+�	���_�����������_�����+�Q���	������
����_����	��+
���	�����_�����������������������`��_�������
�����	�������������{�
�������	���`�� �_�� ������
��
������� �_�� ��	���������	�� ��� �_�� ����� }_��_�

������������������	���

������_����	���������	���	���������������	���	��{�
_��������
�������� �� ��
������`� ��� ��	���������	� ������� �������� ��� �_�� ����

����������� �������+�	������������ �����������+�	��� ������� ��������� ��	�������
���	�������}����
��Q������	�����������������+�	�����	�����{�

�_�	���
��`����	��_����������_���������	����������	����������������������
��������� �	��������� �_��� ��	�	�����������	��� ��� �_�� �������� �	�
��	����� �	���������
�_������`��	��~���	�����
�	��	�������Q���_��	��}��Q���{�{��_����_
���������������`�{�
�	� +�	`��������	��� ����	��� �	�� ��������
������������	��� ������ ���_���_��{� �	�

�_����������� ��� ���	�������`��� �������� �	���+�����`�}_��_������	���� �_�������������

�������� ��	��	�����`� +���� �_�����{� ��	���� �_������� ��	������
��`��� �~����
	���`�����_���`���+����������	���_��+�	�����	�����Q������_����
������{�

������	���������

>������������ ����
��
���������������������	������	��������`��������	�
�������#����	��
}_��_������
�������� ����������`������������	����������������	���������� ������� �������
����	������	��{�����+
�	�	��������������	��+�	������������	��
�������_�+��	���
���
����`�������{�_����

����_���������	���	�����#����������	�+�Q�	���}_��_���������
���+���+��������	�����������`{�����}��Q����������	�
������	�������������������
����
���� ��+
������	� �	����� �

�������	��� �_����_� �_�� �	��`������� +������� ���+� ����
�������	����������
��������{������������	���������	����������������	���
�����_���~�
����	��+�����}����� ���`�	�� �	���������������+
�	�	��� ���_��� �_�	� �	�����	�����#���
��	����{�

A supporting infrastructure for evaluating QoS-specific activities in SOA-based Grids 175

����	��
��������_������	�+�����	�����	�������������	�������������{�������������
����
����	������_�����	���������`� ��������	�������������	�������������� �_���������
����� �_�����~������`���� �_����������� �	��������	� ��� �_��������	���	����+
�����	� ��+�{�
���������� ������

����_� ��� ��� ������� �_�� ����+�	�����	���	��������`�����	���
����������	���}_�����+
����	����������������#����	{�
����������������`����	������
��
�������_�������������	������������	���	��������

����+�	`��

�������	�
������������{��	��$$���������`�}��_��~��	������
�������������

�����_������	���+����	����
��
������	��¡�{�����
������	�+�	����������	���������
��� �_�� ����������������	� �����+��� �������Q���� �_����
�����+�	��{� ���� ���������
�_���+���_��_����	��+������������+�	��������_�	�������������+��_����
������`����
�����	������_�������	���+����	��	������_����
������	�������{�_�����������	�������
�_��� �

����_� ��� ����������������`� _������	���+�	�������� �	� ��
�����`
�� �+
���
+�	�����	{�

�	���������+�	�������+�}��Q���������������������������	���������	�����
��
�
������� ��� ���������{� _����_� �_�� ���� ��� �	���������� �����+���� ��	� �
����`� �_����

������	���� ���� �������� ��������	� �������	�� ��� ��	����	��� �	�� ������`�
��
������{�
�	������_������������_���}��Q�����_���+
��+�	�����	�����_��
����������	���������`�
��������� ����������	�� �_���
��+�#����	� �	�� �����+�#����	���� �_�� +��_���
����	����
�`��_�����_���{�

�	��	��_����

����_�������������_����_����
��
����������������������	���	������
����	��	���	�������������	�����	����	+�	��{������	���	��������������������_�����	��
+��������
����	�����	����{����_��_���}��Q���_�����_������+����
���������+��_�	��+�
������������	���_��}��Q������+�	��������
�������������������	�����������	_�	����_��
������������	�������_���`���+{��	��_���+���������	��������

���������	��������������
�	��	���������	�����+����	������_��
���������`��������������������������	����
�������
�������{�
��_���
��������_��������+
���� ����������� ��������������� ��� �_��+�	���+�	�����

�������� �������}��_�+�	�+��������������	��+
���	{�����_�����������
����	���	��~�
��	���	�������������������_����������������+�	������	��������`��_����������_������
������ �	������� ���������`� �_�����������������������+�	��� �����{�_���}��Q� �	����
������ �� ����������� ���� ������`� 	��}��Q� �_��� +�	������ �_�� ���� ��+
���	����
������	�������	��+����	�����	���	��������������	����������������	����������	�����	{�
��_���}��Q��_�������������� �_������	���������	��	�� �_��+�������	�������������

�	����������������`���+�{�����������¢��
����	�����_�������`��}_�����������������+��
�������}_�	����������������	��Q�������{�_�`���	�������_���+�������	������_���`�
}���_���~��������	���_����������������}_�	�����
���������	���_���+������	������
������ ���������`� �_��+�	�+��������������	��+
���	���	� ����� ����		�������`������
_���{�

�_�	������� �£��
��
������� ���+�}��Q� ����������������������+�	���+�	�� �	���
������	����	+�	�{����_��������_���
�
����
����	����+���������	��`����������	����
�����������������	���	��
��������+��_�	��+������	��������	���������}��	�����	��
�

�������	���	����������
��������{� �	���	������ ��� �_����}��Q��}���~
�������}��Q�
���������	��	���

����_����	������	���_�������+�	���+�	���	�������	����	+�	���
+��������������������_��
�����+�����
��+�#�	���_�������#����	�����_�����������{�

176 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

��	���`������������ �¤��
��
������������ ���+�}��Q� ����+�	���	������ �	��� ����
���������	���� �	����	+�	�{� �	� �_��� }��Q�� �_�� ���_��������	�� �_�� ��+
�	�	��� �	��
��	����	���������_����_�����+�}��Q�+����_���{�

���������
����������	����������

�������������
��`+�	��� _��������+�� +���� ��++�	� �	� �������_{����_���_� �_��

�}�������_�����

����_�������	��+������_���_����_
�������_��
��������������	��`�
�_���� �	���������� ��� ��+������`� �_������	�����������
������� +�	���+�	�� �����{� �	�
�_��� }��Q�� }��������	���	���}��_� �_��
�����+�������	��	��
������������`� ��������
�

�������	����	����	���	��
��+��������#����	�����_�����������{�

������_���	���������	������	�}�}��Q���������	��	��+������������������}��_�
���������	��������������+�	����}��
��	�����+
������_��������~
����	����	�����
������������� ��� �_�� ��+�� ��+�� �_��� }��
�������������
���� �	�� ��������
���������
}��_���+��	�����������	��+������������_���	��������������_������������`���
��`��{�
����+�����_������	���������	�����	���������	����	+�	��}��_�
��+���	�����������

�	� }_��_�� ���� ��+
�����`�� }�� ��	�������� �	� ����`���� �������� ��	���	���� ��{�{��\��
���������������	���	��� �������	�� �}����������� �_���
�����+������������+��	�����
�
������	�{��	��_����~
����	�������������
�������	�	�����_�	������`��_�����{�_��
����� +�	������ �_�� �������� �_�� �������� ��		�	�� �_�� �������� ��	���	���{����� �	�
�������_���	�������}��_���+��	�������~
�����	���_����������	�����	{�_����_��_����
�	���������� �_�������������	������� �_�� �	������� �	�������
�� }��_� ��+�����
�����+�
�	����	��+���_��_������	�����������}��_��_��+�����

��
��������������������~�����
�	�� �_�� �������{� _��
�������� ���������� �	������� ����� �
������	�� �������� ����_�
���	����	�������+
�������	���������� ��������{�\�� Q��
� �_�	��� ��+
���� }�� _����
��������������������_����}�����
������	�� �����	� �����{�_���
������������������
����
���	��� �~
����� �	������ ���������� ���	�+������������� �_��	��}��Q�� �������������� �	�
���Q��	���~�������������	��+�	�����Q�{��	���	��	�����_���
������	���+
��+�	����

����������������������	���_����������������������������������+�	��{�_���
���������
��Q���
������	��_�������
����������_�������������+�	���������������}��_�������	��_���_����
�����������	������+�	�������������������������`�����	��	�������¥���	���`���_�������
��������_�����+�	����	��_����������������������������{��

\�>���$��� �\�}����� �� ����� >	����	+�	�� ���� ��������	�� �	�� �_���	��
$����������������������������}�������_���������������
����`���������
�����+�	�
���	�� $����� �������� �	� ����������� ����� �	����	+�	��{� \�>���$��� ��� ��
����}���� ���_���������������
����`����� ����
� ���� +�	���	�� $������������� �	�
�����������������	����	+�	��{�_������_����������
������	����������`��������+����
������������� �������� �	� �_���	���������������`��� ��������������	������+
�	�	������
�������	�����������	���_������������	��������������	����	���������_����_���������	����
������� �������� �	� �_�� ������}���� ��+
�	�	�� ��`��{� _�� ����	���	�
�`����	������������������	�������������������+������������������
���������	����
�`� �_�� ��	����`���� >	���
������� �	�������`� �	������	������ �_�� ����	���� �����	{�
������ }��� ������ �	� \�>���$��� }��_� �_�� +��	� ����� ��� ��
��`� �� �`����

A supporting infrastructure for evaluating QoS-specific activities in SOA-based Grids 177

�	��������������������	�#���	���_��������������	��������	�����������+���	����������
�+�	�������_��
��������	����������}�`��	�����	���_����������������������������
�����
������ �	� $�������� ����� ��� ��+�	������`� ����	�#�� �_�� �	���+����	{� ������	��
������ ���� ����	����� �	��� �_���� ��++�	������ �������� }��_� �	�����`{� ���
����	���
�_���� ���� �������� ��	����	���
��������� ���� �������� �+���	�� �+
��+�	���� �	�
\�>���$��{�_����
��`+�	������_����
�����������������������	�������
������{�
��+���~�+
�������� �_��
����������� �_������������	����
���+������ �+�����������	�
�������	_�	�������	���������	�	����������	���_��+��������+���������������	�
����
��������{�

_�������	���+
��+�	�����	����\�>���$��������������_���������������
�������
�~������	�}��_������	������	���_��
���������`�������������������+
����������������	�
������	���+�{�����_��+�����������_����	��+��	�������
����`�	�������������~������	�
��+���	���_�����_��+��	���������+�����_����+�����}��������`�������������������������{�
�����	��`� }�� ���� }��Q�	�� �	� �_�� ���������	� ��� �_�� ��	������ �	��������� �`� �_��
+����� �	� �_�� ���� ����� ��� ��	����	���
��������� �	� \�>���$��{� ������� ��������
+���������	���	�����������~��	���_����������_��+��������+������+
��~����	�����{�

_����������~
����	����_�}��_�}������������_���	���������	�����_��
��
����������
���	��	���������	����	+�	�{���+
��+�	���`�}��Q������	�}��	�
�������������	�����
������_���������{�

�������������	����_�����_����}��_�����_�	Q��_����	�	�������

����������������+�_���
�	��_�
��	����`���� >�������	��	������	��� ���������
� �_��
������� �	������ �� ��}���	������	� ��+
��
	�	��������_��>������	��>~
��������	���������	����	����������������}��_�������	���\���������£¤�{�
���}��Q�������	�
�������`���

�������`��_���������������	�������_��>���
��	������	���$�����
�
+�	����	���>�$��{�

��
��������

�{�� ��	���{������{��¦_�	��${������§{�����	�����������������	��	��+����������������������������
�

�������	�{��	���	�{���	�{��	���+
������	����	�������	����	���������`���������

�{� ����_���{������	��������¨{����``����{������������	������	���+�	�������	���	�������������
�	�����������������������{��	�������>>>��	�{���	�{��	�������	����	���������+
���	�������¢��

�{� >��������{�����+�	��_�	����{�������_�����	���{��$������	�����������

���� �	��������������
��	���+�	�{��	���>>>��	�{���	�{��	������������������{������������

�{� ������� �{��{�� ����	�������� ¨{�� ��``��� �{����������������	��� ����������	�� }��_� ���~�����
�	�����
�����\�+����������+�����{��	�����������{��¢�¤���
��	����������������¢��

¡{� ©���¦{�������	���{����}��`���{��¦��Q��	�	����{����
������	�>	_�	����������������������
������$�������`{��	��¡�_��>>>��	�{���	�{��	�������������������¢��

�{� �������{����������{������}���_���{����������¨{���	�>~��	�������	�������	���#����

����_����
�����	��������������$�������`{��	�����_��$>��������¢��

¢{� ���§{����	�¨{�������{���_�	�§{�����������	���������	�������������������`���+��������������`�
�����������������������+�	����	������������
��+�#����	{��	���>>>�����������¡��

£{� �_�	�� �{�� ��	�� �{�� ����� �{�� ���� �{�� ������� ���� ����	���� ����� �������� ��	���+�	��
���+�}��Q{��	�����������{��¤¤���
��	����������������¡��

¤{� ������{�§{��������{��{��������������	�������_�������������������	���+�	���`���+{��	��¤�_�
����\�����{��������¢��

178 Ignacio Blanquer, Vicente Hernández, Damiá Segrelles, Erik Torres

��{����	�������{�����	�	��#���{�������������${��\�>���$��� �����������_�������������������	��
�������� ��
���������� ��� $����� �������� �	� �	� ����������� �	���������� ���+�}��Q{� �	��
���������{����¡���������

��{� ������� �{��������� \���Q��� ������	� �������}���� ����������������	�����`���+�{� ����� �	���	��
���	�����	����	����	����}��Q��	�������������+
���	����
��	�����������������¢¢¤��

{���
����������{�

��{�${��{����	��{��$������������������
����	������~������������_�	��� �������¤¢����¤������
������{�

��{� �{� �{� ��	���� �{��{� ���	��	�� �{� �{� ��Q�_����� �{� �{� ������	���{� >{� ��+��{� �����+��	�����
���	���������	�������	_�	���������+���	����������}����+�����	�����	���������	���	����`��
������������������

{����¤ ���¡����¤£��{�

Checkpointing of Parallel Applications in a Grid
Environment

Kreeteeraj Sajadah, Gabor Terstyansky, Stephen C. Winter and Peter Kacsuk

Abstract Jobs in Grid workflows are exposed to different types of failure. It is im-
portant to develop fault tolerant mechanisms to ensure a good level of reliability dur-
ing the execution of Grid jobs. While checkpointing is the most common method to
achieve fault tolerance, there is still a lot of work to be done to improve the efficiency
of the mechanism. This paper gives an overview of a checkpoint solution for check-
pointing parallel applications executed on multiple sites in the Grid environment.
The checkpointing mechanism is an improvement of the PGRADE checkpointing
solution.

Key words: Checkpointing, First Order Approximation, Natural Synchronisation
Points, Critical Region.

1 Introduction

The Grid environment is generic, heterogeneous, and dynamic with lots of unreli-
able resources making it very exposed to failures. It is vital to develop efficient tools
to make applications that are executed on multiple Grid sites more fault tolerant.

Kreeteeraj Sajadah
University of Westminster, 115 New Cavendish Street, London, UK W1W 6UW, e-mail:
K.Sajadeh@westminster.ac.uk

Gabor Terstyansky
University of Westminster, 115 New Cavendish Street, London, UK W1W 6UW, e-mail:
G.Z.Terstyanszky@westminster.ac.uk

Stephen C. Winter
University of Westminster, 115 New Cavendish Street, London, UK W1W 6UW, e-mail:
S.C.Winter@westminster.ac.uk

Peter Kacsuk
MTA SZTAKI. H-1518 Budapest, P.O. Box 63, Hungary, e-mail: kacsuk@sztaki.hu

180 Kreeteeraj Sajadah, Gabor Terstyansky, Stephen C. Winter and Peter Kacsuk

One of the research challenges in Grid computing is to find mechanisms to ensure
successful execution of applications in the presence of failures.

Section 2 gives a brief explanation about fault tolerance and checkpointing. Sec-
tion 3 summarises some existing projects. Section 4 explains the research work car-
ried out, with a proposed checkpointing solution. Section 5 describes the test bed on
which the checkpointing mechanism has been tested.

2 Fault Tolerance

Fault tolerance is the ability of an application to continue its operation after the ap-
plication, or part of it, fails in some way [18]. In the Grid environment, there are
several techniques to achieve fault tolerance. The most common ones are Retrying,
Replication and Checkpointing. Retrying enables a failed job to be re-executed a
certain number of times. Replication enables replicas of a given job to be executed
on different resources simultaneously. Checkpointing is a process during which the
state of an application is saved, usually to a storage device, so that it may be re-
constructed later in time. In distributed applications, it is harder to achieve fault
tolerance because there are lots of inter-process communications among the pro-
cesses during the execution of an application [17]. A failed process will affect the
whole application even if other processes are still running, thus making the whole
application inconsistent in many cases.

In the Grid environment, Retrying is not the best option because the expected
completion time for a job using this mechanism is very big due to the high rate
of failure. Replication requires extra processing power which is not always readily
available in the Grid environment. Checkpointing is appropriate because it is very
efficient in environment where the rate of failure is high.

3 Related Work

The two main checkpointing techniques are transparent checkpointing and non-
transparent checkpointing [10]. In transparent checkpointing, the placement of
checkpoints as well as the recovery process is transparent to the programmer. In
general, global checkpoints are generated by suspending the whole application at
the checkpointing time. A coordinator orchestrates the checkpointing process en-
suring that the global checkpoint is consistent by instructing processes to perform
synchronisation of messages to ensure that all the in-transit messages are dealt with
conveniently. Once the processes have saved their checkpoint image, they are in-
structed to resume execution. Examples of transparent checkpointing mechanisms
are the CoCheck [13, 15] system and the User-Triggered checkpointing system [6].
P-GRADE [7, 12] is an extension of CoCheck which contains a parallel check-

Checkpointing of Parallel Applications in a Grid Environment 181

point and migration module that enables the checkpoint and migration of generic
PVM programs either inside a Grid site, like a cluster, or among Grid sites when the
PVM programs are executed as Condor or Condor-G jobs. P-GRADE checkpoints
an application periodically. The checkpointing procedure is controlled by a GRAP-
NEL library. A GRAPNEL Server performs a consistent checkpoint of the whole
application. Checkpoint files contain the state of the individual processes includ-
ing in-transit messages, and are stored on a Checkpoint Server. The checkpointing
process and application migration is achieved without the need to modify the user
code or the underlying message passing library. When node loss is detected user
processes are resumed from the last checkpoint.

The non-transparent checkpointing mechanism provides support for checkpoint-
ing through a run-time library. This approach is not transparent to the user. The
developer can specify the data that should be included in the checkpoints as well
as where checkpoints should be taken within the application code [10]. Dome is
an example of a non-transparent checkpointing mechanism. It runs on top of PVM
and supports application-level fault-tolerance in heterogeneous networks of work-
stations [1]. Another example is the 2PCDC checkpointing algorithm [2] which was
integrated into an MPI environment. A coordinator process triggers the checkpoint-
ing mechanism by requesting each process to take a checkpoint. Together with the
checkpoint files, the mechanism also ensures that no in-transit messages are lost by
capturing them using a counter-based approach. During recovery, the coordinator
sends information to each process instructing them to retrieve their state from the
checkpoint server, including in-transit messages. When done, they notify the coor-
dinator which then instructs the processes to proceed [2].

The solutions above produce large overheads due to synchronisation of messages
to achieve a consistent global checkpointing state. The checkpoint intervals are ei-
ther user-defined with no regular pattern or are periodic. Not too much effort has
been made to define techniques to calculate optimal checkpointing intervals. This
is an important criterion as it affects the overall performance of an application. Our
proposed solution ensures a well defined and effective pattern of checkpointing by
eliminating the need to deal with the communication layer where possible, keeping
in mind the necessity of taking checkpoint at the best possible intervals.

4 Proposed Solution

In parallel applications, inter-process communications can cause inconsistent check-
points due to lost messages or orphan messages [4]. To achieve a global consistent
checkpoint, many mechanisms require processes to block their computation to per-
form synchronization [9]. Extra communications among processes are required to
achieve a synchronous state. The mechanism has to either log in-transit messages or
wait for them to be delivered before checkpoints can be taken. Because our research
is focused on fault tolerance of parallel applications, we used the checkpointing so-

182 Kreeteeraj Sajadah, Gabor Terstyansky, Stephen C. Winter and Peter Kacsuk

lution implemented at the SZTAKI Laboratory of Parallel and Distributed Systems,
Hungary as a base [7, 12].

4.1 First Order Approximation

To improve the PGRADE checkpointing mechanism, the first step is to adopt a
methodology to calculate an optimal checkpointing interval. The First Order Ap-
proximation proposed by John W. Young (Fig. 1) is a very good technique to cal-
culate the optimal checkpointing intervals. His research is based on how frequently
checkpoint should be taken during the execution of an application. He said that the
occurrence of failures is essentially random (a Poisson process), with failure rate λ .
The mean time Tf between failures is 1/λ [8].

Fig. 1 First Order Approximation

The following data are needed to calculate the optimum checkpoint interval:

• The number of hours the program will run on the machines (Th).
• The known failure rate during that time (λk).
• The time required to save information at a checkpoint (Ts).

From these information, the mean time between failures (Tf) can be calculated:

Tf = Th/λk (1)

Using this value, the optimum checkpoint interval (Tc) can be calculated using
the following formula:

Tc =
√

2TsTf (2)

Checkpointing of Parallel Applications in a Grid Environment 183

The P-GRADE portal contains a toolset called PROVE [7, 12] which enable users
to visualise the execution of any parallel application launched by PGRADE running
on different Grid sites. Using this tool, we can measure both the execution time and
the checkpointing time of an application.

Nagios [3] is an open source host, service and network monitoring program. We
can find out the failure rate of Grid resources using Nagios.

4.2 Natural Synchronisation Points

To improve the PGRADE checkpointing mechanism, we tried to eliminate the over-
head incurred due to the synchronization process involved during checkpointing.
A parallel program generally executes as a sequence of parallel steps separated by
synchronizations points. Each step is usually composed of three ordered phases;
a local computation phase, a global communication phase and a synchronization
phase [14]. There are several existing synchronization points such as barriers, the
top or the bottom of the main loop and collective operations that represent natural
consistent global states. At these points, we do not need to force a global consistent
state because the processes are already in a consistent state. There are no inter-
process communications involved. Therefore, there is no need to be concerned with
the state of the communication channels or possible in-transit messages.

Barriers are functions that block a current execution until all prefix-operations
have been completed. When a process calls a barrier function, it stops executing. A
coordinated process ensures that all processes have called the barrier function be-
fore execution can continue. That is, all processes should reach the synchronisation
point before they are allowed to proceed past it. Therefore, calls to barrier functions
mark potential checkpoint locations where a process may be saved. Similarly, many
parallel applications have the following program structure: they start with some ini-
tialization procedures and then enter a program loop executing a large number of
iterations [11]. If we insert a checkpoint at the top or bottom of the loop, we con-
strain the exchange of messages to within an epoch. This ensures no lost and no
orphan messages [2]. Collective operations also represent natural consistent global
states for checkpointing. Examples are broadcast, scatter, gather and reduction. The
functions for collective communication are collective, which implies that they have
to be called by all processes before the processes can continue execution [5].

4.3 New Checkpointing Approach

Taking checkpoints at intervals defined by the First Order Approximation still in-
volves synchronisation of messages and capturing in-transit messages. On the other
hand, taking checkpoint at natural synchronisation points only may not be very ef-
fective because there are no patterns in their occurrences. There can be situations

184 Kreeteeraj Sajadah, Gabor Terstyansky, Stephen C. Winter and Peter Kacsuk

where a set of natural synchronisation points occur in quick successions. It is not
efficient to take checkpoint at each of these points because it will affect the perfor-
mance of the application. There can also be situations where we have long periods
between two successive synchronisation points and not taking a checkpointing for a
long period reduces the reliability of the application.

A better solution would be to use a combination of both the natural synchro-
nisation points and the First Order Approximation before making a checkpointing
decision. Using this technique, we can select the most appropriate places to take
checkpoints. The solution takes checkpoints at natural synchronization points which
are closest to the optimal checkpoint intervals. Once a checkpoint is taken, the next
checkpointing interval is calculated from that checkpoint location.

The Fig. 2 below explains how the checkpointing intervals are chosen. The ver-
tical lines represent the optimal checkpointing intervals and the natural synchro-
nization points. The bracket represents the critical region; a region within which a
checkpoint may be taken.

Fig. 2 A Checkpointing Mechanism

The decision to select a checkpoint is based on the optimal checkpoint interval,
the natural synchronisation points and the critical region. Whenever the coordinated
process receives a checkpoint signal from a given process, we may need to take a
checkpoint. The checkpointing process is triggered by signals sent to the coordi-
nated process whenever synchronization points are encountered. Once the coordi-
nated process receives a signal, it checks to see if this signal is within the critical
region. If not, no checkpointing is performed.

However, if the signal is within the critical region, we will need to take a check-
point. Within that region, there may be more than one natural synchronization points
and the one closest to the optimal checkpointing interval is the best choice. For our
purpose, we will save the checkpoint image at the first natural synchronization point
encountered and reset the clock. This is because we cannot predict if we will get
a better solution further along the execution line within that critical region. If no
natural synchronization points are met within the critical region, we will have to

Checkpointing of Parallel Applications in a Grid Environment 185

force a checkpointing at the end of the critical region. In such cases, the checkpoint-
ing mechanism will perform synchronization to ensure there are no lost or orphan
messages. The coordinated process will make sure that the checkpointing images
together with the in-transit messages are saved. Once the checkpoint is taken, all
the processes will resume their normal execution. In case of a failure, the Mercury
monitor [7, 12] will notify the coordination process which will initiate the rollback
mechanism by terminating the execution of all other running processes. If the check-
point to be restored was taken at a natural synchronization point, the rollback mech-
anism will load each process image from the checkpointing file and the execution
process is resumed. We do not have to worry about the in-transit messages. How-
ever, if the checkpoint to be restored was not from a natural synchronization point,
then we will need to restore the in-transit messages as well to ensure consistency.

5 The Test Bed

MadCity is a simulation tool that simulates traffic on a road network and shows how
individual vehicles behave on roads and at junctions. It models the movement of ve-
hicles in a road system described in a network file and turn file. The MadCity traffic
simulator can be parallelised using P-Grade. We can create a workflow that will ex-
ecute the parallel simulation of MadCity where each node will execute a particular
road partition to provide simulation locality and allow efficient parallelisation of the
simulator [16]. As an experiment, an executable of the MadCity simulator was ex-
ecuted through the command line and our proposed checkpointing mechanism was
tested. See Fig. 3 below. Through the First Order Approximation, the calculated op-
timal checkpoint interval was 8 minutes. A critical region of 2 minutes range from
the optimal checkpoint interval was defined.

Fig. 3 The Checkpointing Solution

186 Kreeteeraj Sajadah, Gabor Terstyansky, Stephen C. Winter and Peter Kacsuk

Based on our proposed methodology, the first checkpoint that is stored is Ns1
(9.5 min). As execution continues, we reach Ns2 (14.5 min) where a decision has to
be taken on whether or not to take the checkpoint. Ns3 (17 min) is a better solution
because it is nearer to the optimal checkpoint interval Op2. However, since we can-
not forecast what will happen, it is best to take a checkpoint at Ns2. As we move
towards Op3, we get the natural synchronisation point Ns4. Because it is outside
the critical region it is dropped. As we move on, we enter another critical region
and store the checkpoint at Ns5 (25 min). Unfortunately, within the fourth critical
region there are no natural synchronisation points. In that case, we need to force
a checkpoint (Fs1 - 32 min) as soon as we leave that critical region. The program
continues execution and enters another critical region which contains the natural
synchronisation points Ns6 (38.5 min), Ns7 (39 min) and Ns8 (41.5 min). How-
ever, a checkpoint is taken at the first synchronisation point, Ns6. As the program
continues, another checkpoint is taken at Ns9 (50 min).

From the figure above, the First Order Approximation enables checkpointing at
an interval of 8 minutes. If checkpoints are taken at selected points explained above,
the average time between checkpoints is 8.3 minutes. However, here, less time were
involved in saving the checkpoints.

6 Conclusions

The checkpointing mechanism provides a better and more efficient way to save
checkpoint images. The next step is to integrate the checkpointing solution in
PGRADE to provide an efficient fault tolerant solution to applications executed as
Grid workflows.

In the worst case scenario, the mechanism will behave as the base PGRADE
checkpointing mechanism where the process will take checkpoints at the end of each
critical region thus requiring processes to perform synchronisation of messages.

The mechanism itself can further be improved to select the best options among
the set of natural synchronisation points that may exist within a critical region. For
example, a buffering mechanism can be used to buffer a checkpoint file temporarily,
replacing it with the better option as we move along the execution line within the
critical region. When we reach the end of the critical region, the checkpoint image
in the buffer is stored on the storage device.

References

1. A. Beguelin, E. Seligman, P. Stephan: Application level fault tolerance in heterogeneous net-
works of workstations. Journal of Parallel and Distributed Computing, volume 43, issue 2,
pp. 147 - 155, June 1997.

Checkpointing of Parallel Applications in a Grid Environment 187

2. A. Nguyen-Tuong: Integrating Fault-Tolerance Techniques in Grid Applications. A Disserta-
tion Presented to the Faculty of the School of Engineering and Applied Science at the Uni-
versity of Virginia, p. 170, August 2000.

3. D. Josephsen: Building a Monitoring Infrastructure with Nagios. Prentice Hall, February
2007.

4. E.N.Elnozahy, D.B.Johnson, Y.M.Wang: A Survey of Rollback-Recovery Protocols in Mes-
sage Passing Systems. ACM Computing Surveys (CSUR) Volume 34,issue 3, pp. 375 - 408,
September 2002.

5. G. Bronevetsky et al.: Collective operations in application-level fault-tolerant MPI. Interna-
tional Conference on Supercomputing. Proceedings of the 17th annual international confer-
ence on Supercomputing, USA, pp. 234 - 243, 2003.

6. G. Deconinck, R. Lauwereins: User-triggered checkpointing: system-independent and scal-
able application recovery. In Proceedings Second IEEE Symposium on Computer and Com-
munications, pp. 418 - 423, July 1997.

7. J. Kovacs, P. Kacsuk: A Migration Framework for Executing Parallel Programs in the Grid -
all 6 versions, 2nd European Accross Grids Conference (Nicosia, Cyprus), Springer LNCS,
pp. 80 - 89, 2004.

8. J. W. Young: A first order approximation to the optimum checkpoint interval. Communica-
tions of the ACM, volume 17, issue 9, pp. 530 - 531, September 1974.

9. K.M.Chandy, L. Lamport: Distributed Snapshots: Determining Global States of Distributed
Systems. ACM Transactions on Computer Systems, volume 3, issue 1, pp. 63 - 75, February
1985.

10. L.M. Silva, J.G. Silva: System-Level versus User-Defined Checkpointing. Proc. of the 17th
Symposium on Reliable Distributed Systems, pp. 68 - 74, October 1998.

11. P.E. Chung, Y. Huang, S. Yajnik: Checkpointing in CosMiC: a User-level Process Migration
Environment. Pacific Rim International Symposium on Fault-Tolerant Systems, pp. 187 - 193,
December 1997.

12. P. Kacsuk et al.: P-GRADE: A Grid Programming Environment. Journal of Grid Computing,
volume 1, issue 2, pp. 171 - 197, 2003.

13. P. Stefán: The Hungarian ClusterGrid Project. Proc. of MIPRO’2003, Opatija, 2003.
14. R.Y. de Camargo et al.: Checkpointing BSP parallel applications on the InteGrade Grid mid-

dleware. Concurrency and Computation: Practice & Experience, volume 18, issue 6, pp. 567
- 579, May 2006.

15. R. Ribler, J. Vetter, H. Simitci, D. Reed: Autopilot: Adaptive Control of Distributed Appli-
cations. Proc. 7th IEEE Symposium on High Performance Distributed Computing, Chicago,
Illinois, pp. 172 - 179, July 1998.

16. T. Delaitre et al.: Traffic Simulation In P-Grade As A Grid Service. 5th Austrian-Hungarian
Workshop on Distributed and Parallel Systems, DAPSYS, pp. 129 - 136, 2004.

17. V. Dialani et al.: Transparent Fault Tolerance for Web Services based Architectures. In the
proceedings of the Eighth International Europar Conference (EURO-PAR’02). Padeborn,
Germany, pp. 889 - 898, August 2002.

18. W. He: Recovery in Web service applications Proceedings of the 2004 IEEE International
Conference on e-Technology, e-Commerce and e-Service (EEE’04), pp. 25 - 28, March 2004.

The Grid Data Source Engine Batch Query
System

Giuliano Taffoni, Edgardo Ambrosi, Claudio Vuerli, Fabio Pasian

Abstract The interest in grid-databases integration has been steadily increasing in
recent years and several projects provided different grid middleware components
or tools trying to face this challenge. Among them the Grid Data Source Engine is
offering native access to relational and non-relational data sources in a grid envi-
ronment. In this paper we present its asynchronous query mechanism and we focus
on the ability of this GSI/VOMS based middleware component to be integrated in
workflow management systems.

Key words: grid, database, workflow, data management, grid architecture

1 Introduction

Modern e-Science projects have a broad perception of the grid, as their applications
require not only traditional computations, but also the use of complex data opera-
tions that require on-line and off-line access to pre-existing heterogeneous and inde-
pendently operated databases (DB). For example, some of the data accessed from a
grid infrastructure by the BioinfoGRID project come in the form of relational DB.
Another important example regards the Astronomical community that is using DB
management systems (DBMS) to structure and store important data sets [11, 8].

Giuliano Taffoni, Claudio Vuerli, Fabio Pasian
INAF-OATS, via Tiepolo 11, 34143 Italy, e-mail: taffoni@oats.inaf.it

Edgardo Ambrosi
CNR, IASI, Viale Manzoni 30, 00185 - Roma, Italy e-mail: ambrosi@gmal.com

Claudio Vuerli
INAF-OATS, via Tiepolo 11, 34143 Italy, e-mail: vuerli@oats.inaf.it

Fabio Pasian
INAF-OATS, via Tiepolo 11, 34143 Italy, e-mail: pasian@oats.inaf.it

190 Giuliano Taffoni, Edgardo Ambrosi, Claudio Vuerli, Fabio Pasian

Fig. 1 Resource level proto-
cols overview for a Globus
Toolkit 2 GDSE. The picture
presents the different com-
ponents and layers involved
in the SQL statement pro-
cessing. The query manager
manages the query execu-
tion. The QueryWrapper is in
charge of the GDSE and gLite
WMS interations.

USER

GSI

Gatekeeper

Query Manager

RSL library

PARSE

Query batch system

ODBC Manager

DSE instance

Query process

Query process

Query process

VOMS
attributes

PARSE

CREATE

Monitor
&

control

Request

GRIS
Info providers

MIB
NOTIFY

SNMP

Consumer
request

Resource
allocation

Spooler GSIFTP

GSIFTP/GASS

QueryWrapper

In this paper we present the advances of the GDSE. The GDSE provides security,
transparency, robustness, efficiency and dynamic mechanisms to manage standard,
relational, flat and xml DBMSs. Here, we focus on its capability to manage off-
line queries that can be used to design workflows involving the use of DBMSs and
standard computational resources. The outline of the paper is as follows: in Sect. 3
we summarize the GDSE architecture and features, while in Sect. 4 we discuss the
design and implementation of the batch query system for off-line queries in a Globus
environment [5]. Sect. 5 is dedicated to gLite [7] implementations and workflow
capabilities. Finally, in Sect 6, we draw our conclusions and highlight future work.

2 Related Work

The need to integrate DBs and DB technology in the grid environment has already
been recognized as a core research activity by the grid community and some tools
and services have been developed for this purpose: (i) the Grid Relational Catalog
(GRelC) [4]; (ii) the Grid Data Source Engine (GDSE) [1, 9]; (iii) the OGSA data
access and integration middleware [2]. The OGSA-DAI project addresses the data
virtualization and its underlying data resources [2]. OGSA-DAI developed a set of
composable components that encompass uniform access to data sources. It is actu-
ally a new Grid middleware specialized for data access and integration that from an
architectural point of view matches the Open Grid Service Architecture, it imple-
ments GSI security and data encryption. On the contrary we propose a different but
complementary approach, we extend the computational capabilities of the standard
computational resources so they interact with DB on the basis of an SQL job execu-
tion. Our approach is based on the idea that actual middleware implementation used
to access computational resources should not be modified. The GRelC Project has
developed a gSOAP based service that acts as front-end for database access on the
Grid. It is designed on a client/server approach, security is based on GSI. An eval-
uation test campaign [10] has been done to compare performance and capabilities
of G-DSE, AMGA [6], OGSA-DAI and G-DSE. According to those tests G-DSE
demonstrates to be fast and versatile.

The Grid Data Source Engine Batch Query System 191

Fig. 2 The GDSE batch query mechanism.

3 Grid Data Source Engine: concepts, features and Queries

The GDSE is a grid component that inherits all the CE capabilities and capacities.
Previous works on GDSE addressed architectural design aspects, related to middle-
ware components, synchronous query mechanisms, integration in Globus (>2.4.3
and 4) and gLite, efficiency and performance [1, 9, 10] (Fig. 2).

In analogy with a CE, the G-DSE publish its status, contents and contact infor-
mation of each DB in the Grid Information Service [5, 7] and a Query Manager
(QM) is in charge of managing remote queries. The GDSE is able to direct state-
ments regarding queries, updates, loads or schema change operations to any SQL
data source. The authentication is based on GSI. Moreover it supports a global au-
thorization level (by means of VOMS) that ensures scalability, manageability and
flexibility in role and policies management. GDSE implements two kind of queries:
synchronous and batch queries. Synchronous queries wait for the query to be com-
pleted and, since control is hidden in the query submission, neither the applications
nor the GDSE are able to estimate the query execution time. Many applications do
not want to block waiting for the query to be completed, but to proceed and eventu-
ally check whether the query ends successfully. Moreover, queries may last for long
time, for example when performing complex statistical computations using DBMS
computing capabilities and statistical functions. In this case the query may become
part of a complex workflow that involves both DBMS and classical computation
resources. In all those cases a batch approach is mandatory. GDSE implements data
encryption to protect the information in WAN connections and channel protection
based on GSI or SSL. Using a batch approach we are able to decouple Application-
DBMS connections consequently increasing reliability against possible WAN insta-
bilities.

4 Grid Data Source Engine Batch Queries

In Globus and gLite implementations the Globus Resource Allocation Manager
(GRAM) is in charge of processing the requests for remote query execution thanks
to the QM [5, 9]. In practice we use the Resource Specification Language (RSL) to
encapsulate an SQL statement that is ”executed” by a DBMS (Fig. 2).

192 Giuliano Taffoni, Edgardo Ambrosi, Claudio Vuerli, Fabio Pasian

GDSE

DBMS
QBS

Query
split

RSR
Output

Formatting

DBMS

DBMS

Q1

Q2

Q3

R1

R3

User

SQL
submit

queryID

SE

GetOut

GetOut

Q
ueryM

anager

Spooler

Fig. 3 GDSE DB Virtualization. We present the main component used to make the DB virtualiza-
tion.

To manage query execution, we introduce a DB local resource manager: the
Query batch System (QBS). It is a simple scheduler that enqueues the queries and
that can be configured to assign a maximum number of contemporary queries.
The QBS accepts queries from the query manager and invokes DBMS execu-
tion remotely through UnixODBC APIs. The query result is staged in the query
spooler and then remotely accessed by the application (see Fig. 2) via GRIDFTP or
GASS[5]. The spooler can be configured on a remote grid storage element (SE) or
on the GDSE itself.

In practice, the execution of a query is expressed in terms of a job submission,
for example to select columns A and B from table T of TEST DB, a client may use
the command:
globusrun -r hostname:2119/dbmanager-odbc ’&(executable=”SELECT A, B FROM
T;”) (queue=”TEST”)’
This example highlights the modification done on the GRAM protocol and the RSL–
SQL encapsulation. RSL ”file stage in” and ”file stage out” attributes can be used
to access remote spoolers to read the SQL statements from a file or to write the
result. The user can retrieve the output either using the globus-get-output command
or from the storage resources using the GSIFTP APIs or commands.

When working in the gLite environment, we use the gLite data management ser-
vice as GDSE spooler. We modify the GRAM Jobmanager component to copy and
register files in the LCG File Catalogue [7] and to assess files stored in the LCG on
the basis of their Logical File Name [7]. An important feature concerning the GDSE
is the DB virtualization (Fig. 3). The GDSE is able to aggregate different DBMSs
that appear to the user as one single (virtual) resource. The QBS coordinates the
requests to the DBMSs and organizes the output (read/write operations are permit-
ted). At this stage no distributed JOIN is supported, DBs should have dentical DB
schemas, and the QBS addresses the issue of simple conflicts as identical entries.

5 Asynchronous and Workflow queries in gLite infrastructure

The gLite grid middleware provides common high level services; one of them is
the Workload Management Service (WMS), the grid job scheduler. This collective
service directs all the job submission phases, coordinates computational and storage

The Grid Data Source Engine Batch Query System 193

Fig. 4 Astronomical Reduc-
tion procedure. We present
a DAG schema and its JDL
description.

A B

C

D

Type = "DAG";
nodes = [
 A = [get calibration data from catalogue];
 B = [Create calibration BIAS];
 B = [Create calibration FLAT];
 B = [Create Calibration DARK];
 C = [Reduce Image];
 D = [Calibrate Image (needs catalogue)];
 E = [Extract point sources];
 F = [Push point sources into new catalogue];
 G = [Correlate old and new catalogue];
 H = [Create Archive];
];
dependencies = {
 {A,D},{B ,C},{B ,C},{B ,C}
 {{A,C},D}
 {D,E}
 {E,F}
 {F,G},{F,H}
 };

B B

E

F

G H

resources, handles workflow [7]. Once the GDSE resources are published in a BDII
using the modified GLUE schema, they become valid grid resources for the WMS.
So the WMS can be used to submit asynchronous queries (no WMS modifications
are necessary). However, a QueryWrapper component must be introduced in the
GDSE that manages the interaction between the GDSE and the WMS, in analogy
with the JobWrapper.

In practice, when a client requires the execution of a query, it specifies that the
executable parameter of the JDL is the SQL string. For example to select all data
from table A of TEST database we use the gLite command: glite-wms-job-submit -a
query.jdl where query.jdl is:
[
Executable=”SELECT * FROM A”; Arguments=”-xml”; StdOutput=”sqlresults”;
StdError=”stderr”; OutputSandbox={”sqlresults”,”stderr”}; Requirements =
(other.GlueDSEName=”TEST”) && (other.GlueDSEInfoLRMSType=”PostgreSQL”);
]
The user submits the query getting back the queryID. Files to be transferred be-
tween GDSE and WMS, after the job execution, can be specified as attributes of
the OutputSandbox parameter. In this particular case, the result set of the query is
collected in the sqlresults file that is then transferred to the user interface using the
glite-wms-job-output command.

The query result is formatted in XML format; the user can specify different for-
mats: XML, CSV, plain text and HTML. Different result set formats are suggested
by different needs: (i) the XML format is preferable for application-application or
GDSE-application interactions; (ii) the Comma Separated Version is a common ex-
change format between different DBMSs; (iii) plain tabular format is useful for
human visualization; (iv) HTML is preferable when interacting with portals.

Query Workflow: a use case
The gLite WMS framework naturally implements jobs aggregation in the form

of Directed Acyclic Graphs (DAGs). DAG capability can be used to create a simple
workflow that involves both classical computation and data access. As a test case,
we use DAG workflows to process Astronomical Images and create a new archive.
As shown in Fig. 4 this operation requires various steps. Some of them require im-
age processing computations, others interaction with DBs. In particular, we process

194 Giuliano Taffoni, Edgardo Ambrosi, Claudio Vuerli, Fabio Pasian

images from the Galileo Telescope using the GSC2 catalogue. The catalogue has
been divided in 8 DBs and is virtualized by the GDSE.

6 Conclusions

In this paper, we described the batch query mechanisms provided by the GDSE. The
GDSE can be integrated in any workflow pattern that supports interaction with grid
computational resources; no modification in the workflow framework is necessary,
queries (insert/select/management) are executed as a standard job. In fact, the GDSE
implementation is based upon Globus (¿2.4.2 and 4) and gLite standard protocols
and APIs (C, C++, JAVA, Python etc.). Future work is related to the extension of
this approach to more complex workflow managers such as the one implemented in
the PGrade portal and to the extension of the DB virtualization capabilities. IGI, the
Italian grid Infrastructure (partner of the EGEE grid), will officially distribute the
GDSE as a DB access middleware component from summer 2008.

References

1. Ambrosi, E., Ghiselli, A., Taffoni, G.: GDSE: A New Data Source Oriented Computing Ele-
ment for Grid. In: Parallel and Distributed Computing and Networks 517:53-57 (2006)

2. Antonioletti, M., Atkinson M. P., Baxter R., Borley A., Chue Hong N. P., et al.: The Design
and Implementation of Grid Database Services in OGSA-DAI. Concurrency and Computa-
tion: Practice and Experience 17(2-4): 357376 (2005)

3. Alfieri, R., Cecchini R., Ciaschini V., dell Agnello L, Frohner A.: From gridmap-file to
VOMS: managing authorization in a Grid environment. Fut. Gen. Comp. Syst. 21(4): 549558.
(2005)

4. Fiore, S., Negro, A., Vadacca, A., Cafaro, M., Mirto, M., Aloisio, G.: Advanced Grid
DataBase Management with the GRelC Data Access Service. In: Proc. of the 5th Interna-
tional Symposium on Parallel and Distributed Processing and Applications (ISPA07), 2007,
LNCS 4742, 683-694 (2007)

5. The Globus project website, http://www.globus.org. Cited 20 Mar 2008
6. Koblitz, B., Santos, N., Pose., V.: The AMGA metadata service. In J. Grid Comput. 6(1),

61-76 (2008)
7. Laure, E., Fisher, S.M., Frohner, A., et al.: Programming the Grid with gLite. Comp. Meth.

in Science and Technology 12(1), 33-45 (2006)
8. Pasian, F., Taffoni, G., Vuerli C., Interconnecting the Virtual Observatory with Computational

Grid infrastructures. In: IAU Prague, SPS3: 33 (2006)
9. Taffoni, G., Ambrosi, E., Vuerli, C., et al.: The Query Element: grid access to databases.

In: Grid Computing Research Progress, Nova Publisher, NewYork, isbn: 978-1-60456-404-4,
(2008)

10. Taffoni, G., Fiore, S., Donvito, G., Jain A., et al.: How to access databases from EGEE-II grid
environment: a comparison of tools and middleware. In Proceedings of the Third Conference
of the EELA Project R. Gavela, B. Marechal, R. Barbera et al. (Eds.) CIEMAT: 34-54(2007)

11. Taffoni, G., Maino, D., Vuerli, C., Castelli, G., et al: Enabling Grid technologies for Planck
space mission. In. Fut. Gen. Comp. Syst. 23(2): 189-200 (2007)

Reputation-Policy Trust Model for Grid
Resource Selection

Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

Abstract Grid systems are gradually shifting into a dynamic pool of services pro-
viding user access to heterogeneous resources spanning multiple security domains.
In such systems, where it is necessary to share resources between potentially un-
known parties, dynamic trust establishment becomes crucial factor for qualifying
resources for selection. This paper argues that a reputation-policy based approach
should be considered in order to provide complete resolution for dynamic trust es-
tablishment between Grid resources. The trust model presented in this paper intro-
duces a novel paradigm for evaluating resources, as it allows subjective trust based
resource selection to be based on client reputation policy statements.

Key words: Grid Security, Reputation, Policy, Trust Model, Resource Selection

1 Introduction

Grid research has traditionally focused on supporting large-scale scientific collabo-
rations where resources from trusted entities were pooled together in order to form
a VO [4]. However, as Grid systems are increasingly being developed for business

Yonatan Zetuny
Centre for Parallel Computing, University of Westminster, 115 New Cavendish Street, London
W1W 6UW, UK, e-mail: yzetuny02@wmin.ac.uk

Gabor Terstyanszky
Centre for Parallel Computing, University of Westminster, 115 New Cavendish Street, London
W1W 6UW, UK, e-mail: terstyg@wmin.ac.uk

Stephen Winter
Centre for Parallel Computing, University of Westminster, 115 New Cavendish Street, London
W1W 6UW, UK, e-mail: s.c.winter@wmin.ac.uk

Peter Kacsuk
MTA SZTAKI, 1111 Kende utca 13, Budapest, Hungary, e-mail: kacsuk@sztaki.hu

196 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

purposes, more questions are being raised in regards to how to share resources be-
tween unknown, untrusted business parties [5]. In particular, resource selection be-
comes a great concern, as users may engage with uncertain workflows increasing
potential execution risk. Grid security research has initially addressed trust through
security mechanisms [7]. These mechanisms enabled single sign-on (SSO) for an
entity in the system, considering that the entities belonged to the same trusted do-
main. Authentication mechanisms were provided through certificates, which entitled
the nodes belonging to the trusted organizations, to join the Grid. As a result, trust
creation and management has involved human-coordinated process. For example,
when a new organization wished to join the Grid, it had to fulfill the requirements
set by the certification authority and wait for its approval before it was able to par-
ticipate in the computation. Once the organization was approved by the certification
authority, it was considered trustworthy by the other resources.
However, as the the Grid shifts to ubiquitous and pervasive computing models, there
is an increasing demand to be able to evaluate and manage the reputation of all
entities in terms of their quality capabilities once they joined the Grid [6]. Cur-
rently, there are very few reputation model approaches applied for Grids. These
approaches, such as GridEigenTrust [8] and PathTrust [9], are one of the first at-
tempts to incorporate reputation-based trust management systems into Grid comput-
ing, based on earlier developments and requirements identified in P2P systems. At
present, all Grid reputation-based trust models propose a central reputation service
providing deterministic, predefined metrics for selecting a trusted resource from a
list of possible alternatives. These approaches are limited as that they do not allow
user involvement in the trust evaluation process. Grid clients are not able to calculate
the trust value of a Grid resource by specifying their own evaluation criteria and as
a result, they have to rely on a central reputation algorithm to compute trust values.
These limitations stimulated the motivation behind the reputation-policy trust model
for Grid resource selection. This model allows Grid clients (users and applications)
to carry out a heuristic involvement in the trust and reputation evaluation process.
This is achieved by enabling Grid clients to augment their existing reputation queries
with a set of reputation-policy requirements expressed as policy statements. These
requirements, rectified as a trust decision strategy representing quality aspects and
relationship rules, provide complete trust metrics for the reputation algorithm, thus
enabling fine-grained resource selection. The philosophy behind this approach is
that reputation is a subjective matter and context dependent. Moreover, reputation
should be consolidated with opportunistic trust based decisions allowing clients to
predefine a threshold of trustworthiness reflecting on their individual attitude to risk.
For example, two clients may have different opinions and decision actions regard-
ing the trustworthiness of the same Grid resource, given their job requirements and
evaluation criteria. This paper is structured as follows. Section 2 defines the core
concepts behind trust, reputation and policy. Section 3 presents the principles of
the reputation-policy trust model and its main contributions. Section 4 describes
in details the reputation-policy trust model and its internal artifacts Trust Decision
Strategy (TDS), Opinion Matrices (OM) and the Correlation Process (CP). Finally,
section 5 summarizes current work and discusses future work.

Reputation-Policy Trust Model for Grid Resource Selection 197

2 Trust Concepts

This section defines the basic terminology that will be used throughout the rest of
this paper.

2.1 Trust

Trust is a complex concept which had been a subject of research in different fields
including sociology, business, law and computing. In the context of this paper, trust
is based on Gambetta’s [1] theoretical work, and envisions trust as the subjective
belief a trusting agent1 has in the capability of a trusted agent to deliver a qual-
ity service in a given context and time slot. This belief is based on the trusting
agent’s direct and indirect experiences with the trusted agent. In the scope of the
work described in this paper, trust is regarded as benchmarking mechanism used for
managing workflow execution risk.

2.2 Reputation

Reputation is a concept closely related to trust, as it is considered as a measure of
trustworthiness. In the context of this paper, reputation is based on Abdul-Rahman
and Hailes [2] theoretical work and envisions reputation as the aggregation of all
the recommendations from the third-party recommendation agents about the service
quality of the trusted agent in a given context and time slot. The recommendations
are testimonies for different quality factors which aggregate both direct and indirect
experiences with the trusted agent.

2.3 Policy

Policy is defined as a statement of the intent of the owner or controller of some com-
puting resources, specifying how he wants them to be used. However, in the scope
of the work described in this paper, policy is regarded as reputation requirements
expressed by trusting agents depicting their intrinsic view on trust and the type job
they wish to submit.

1 Agents are communication facilitators. The remainder of this paper refers to users, resources and
services as agents.

198 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

3 Toward Reputation-Policy Based Trust Management in Grid
Computing

The reputation-policy trust model presented in this paper is based on theoretical
work made by [1] and envisions trust is as subjective belief a trusting agent has in
the capability of a trusted agent to deliver a quality service for a given job context
and time slot. The main argument for this model concentrates on the notion that a
trusting agent should be able to define a trust decision strategy representing sub-
jective and opportunistic view on trust in order to manage workflow execution risk.
The trust decision strategy is comprised of two aspects:

Evaluation Model (EM) Ontology modeled by set of opinions, each of which rep-
resents subjective building block of trust (availability, re-
liability, cost, etc) and their relationships.

Decision Rules (DR) Set of rules modeled by a map potential outcomes and
correspondent opportunistic decisions.

There are five research contributions derived from the reputation-policy trust
model propagating the presented argument into different aspects of a trust man-
agement system:

1. Reputation-Policy Trust Mechanism - Combined mechanism of policy state-
ments for describing reputation evaluation and a reputation algorithm for calcu-
lating trust metrics based on the policy statements.

2. Metrics Pool (MP) - Mechanism for correlating opinions defined by trusting
agents and opinions defined for the VO. For example, if a trusting agent defines
availability and response time as opinions, the metrics pool will correlate these
opinions to the ones available in the VO.

3. Revised Feedback Methodology - Segregated feedback methodology allowing
trusting agents to rate executions with trusted agents based on opinions previ-
ously defined in the reputation-policy. The methodology records a segregated
value for each opinion.

4. Aggregated Reputation-Policy Algorithm - Allowing the reputation algorithm
to support global trust context. This allows obtaining the trust and reputation
values for an entire VO based on the individual trust of its members using global
scope reputation-policy statements.

5. Reputation Meta-Model - Semantic descriptions for ontologies defined in the
reputation-policy model, such as opinions, sources and rules, in order to support
strong knowledge sharing among trusting agents, the reputation-policy model
and trusted agents.

These contributions extend the boundary of current trust and reputation research
in Grid computing as they form the initial model which allows fine-grained re-
source selection based on policy augmented reputation queries constituting as com-
plete trust metrics for the reputation algorithm. The following section describes the
reputation-policy trust model in further details.

Reputation-Policy Trust Model for Grid Resource Selection 199

4 Reputation-Policy Trust Model

The reputation-policy trust model is a distributed data model where trust data is
divided between the trusting agent and the reputation algorithm. As previously de-
scribed, the trusting agent defines its reputation-policy in the form of a trust deci-
sion strategy while the reputation algorithm exploits opinion matrices for storing
and manipulating historical execution data. The correlation between the two arti-
facts involves reconciliation of each opinion element in the trust decision strategy
with it’s historical information counterpart in order to compute trust values. The fol-
lowing subsections describe the trust decision strategy, the opinion matrices and the
correlation process in further details.

4.1 Trust Decision Strategy (TDS)

The Trust Decision Strategy is represented by a fuzzy tree model (FTM) consisting
of a finite set of opinions and relationship rules. An opinion is a subjective building
block of trust (e.g. availability, reliability, data accuracy, etc). The MP defines a set
of opinions applicable for the VO. Therefore, the opinion elements defined in the
FTM must be a subset of the opinions in the MP. Let x denote an opinion, let F
denote a set of opinions defined in the FTM and let M denote a set of opinions
defined by the MP. The opinion inclusion constraint is defined as:

∀x(x ∈ F → x ∈ M) (1)

So that all opinions x in set F must be a correspondent opinion x in set M in order
to be considered for correlation (residual opinions are ignored by the MP). Every
opinion is dependent on one or more sources. A source is a reference for information
such as reputation or experience. Let O define an opinion, let S denote a source
set, let e denote an experience source and element let r denote a reputation source
element. The following constraint can be defined:

S = {e,r} ,O = {x|x ⊆ P(S)∧ x /∈ �}⇔ {{e} ,{r} ,{e,r}} (2)

So that an opinion O can be based on either experience or reputation or both expe-
rience and reputation, denoted by the following predicate: (e∨ r)∨ (e∧ r). Sources
for an opinion can have a weight factor, indicating the importance of a source over
another source. In general, weight factors form part of a larger concept known as
relationship rules. Rules are general constraints which can be attached to elements
(e.g. decisions, opinions and sources) or group of elements. Rules are modeled using
fuzzy logic, indicating a degree of influence of one rule over another. For example,
let S denote a source set and let WR denote a weight rule set for S. The following
condition must be met: f : WR→ S, so that the number of weight rules must be equal
to the number of sources and that each source must be referencing only one weight

200 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

rule. The weight for a source is modeled using a fuzzy value indicating the degree of
importance where 1 represents complete importance, and 0 for irrelevance. There-
fore, the weight membership function µ(WRs) maps WRs to the interval [0,1], so
the following constraint can be defined:

WVs = µ(WRs),0 ≤WVs ≤ 1∧
2

∑
i=1

WVs = 1 (3)

This implies that a weight value for a source WVs is a decimal in the range of [0,1]
and a summary of weight values (e.g. reputation and experience) is equal to 1. In
conclusion, the following can be generalized for permissible values for an opinion:

O = {{Se,WRe} ,{Sr,WRr} ,{(Se,WRe),(Sr,WRr)}} (4)

However, if exists only one source of opinion, it can be assumed that the weight
value WVs = 1. Therefore, the weight rule can be discarded and it can be simplified
to:

O = {{Se} ,{Sr} ,{(Se,WRe),(Sr,WRr)}} (5)

Similarly to sources, opinions can have weight factors associated with them, indi-
cating an importance of an opinion over another. A set of n opinions constitutes as
an evaluation model forming the ontology aspect of the reputation policy. Let EM
denote an evaluation model, let O denote an opinion and let WRo denote a weight
rule on O. The evaluation model can be defined in the following way:

EM = {{(O1,W1Ro),(O2,W2Ro), . . . ,(On,WnRo)}} (6)

The evaluation model is combined together with decision rules to form a complete
trust decision strategy. The decision rules, modeled as a decision tree, are used as
a decision tool for analyzing trust metrics outcomes and possible courses of action.
For example, at a basic level, a decision rule is supplied to denote a threshold value
for trusting a resource. A value of 0.8 means that any resource(s) quantified at this
value and above will be considered trustful for a job execution. Let T DS denote a
trust decision strategy and let DR denote a decision rule. The trust decision strategy
can defined in the following way:

T DS = {EM,(DR1,DR2, . . . ,DRn)} (7)

Figure 1 illustrates an abstract model of the trust decision strategy comprising of
opinions (O1, . . . ,On) and decision rules (DR1, . . . ,DRn) respectively representing
the evaluation and decision aspects of the model. The novelty of this model is de-
rived from it’s competency to define ontologies representing subjective trust opin-
ions as well as decision rules reflecting opportunistic courses of action once the
resource evaluation criteria has been completed.

Reputation-Policy Trust Model for Grid Resource Selection 201

Fig. 1 Trust Decision Strategy Model

4.2 Opinion Matrices (OM)

Opinion matrices are tabular data structures which store the historical evaluation
feedback values reported by trusting agents. They are based on the reputation defi-
nitions made by [2]. For each opinion defined in the MP universe there is one and
only one correspondent matrix, storing evaluation feedback data regarding that opin-
ion. Let MP denote a set of existing opinions in the metrics pool and let MS denote
a set of matrices. The symmetric difference condition MP�MS = {�} must always
be kept in order to ensure validity of the data model. This is of particular importance
during the correlation process, where each opinion defined by the trusting agent is
matched with its matrix counterpart. When an execution is completed, a trusting
agent is required to rate the quality of the transaction using an evaluation feedback
mechanism. This mechanism gathers a score value for each opinion originally de-
fined by the trusting agent using the trust decision strategy. Let EFα(β ,O) denote
an evaluation feedback EF made by trusting agent α on trusted agent β regarding
opinion factor O. The following data set is contained within each feedback:

EFα(β ,O) = {T S,V} (8)

The set contains T S, which denotes a UTC time stamp and V , which denotes a
fuzzy value in the interval of [0,1]. The complete evaluation feedback set EFSα(β)
is described in the following way:

202 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

EFSα(β) = {EFα(β ,O1),EFα(β ,O2), . . . ,EFα(β ,On)} (9)

A replica of the evaluation feedback set EFα(β ,O) is stored by the MP in order to
be utilized by the opinion matrices. The general matrix model M(O) for an opinion
O context, contains columns

{
C1, . . . ,Cj

}
representing a set of trusted agents and

rows {R1, . . . ,Ri} representing a set of trusting agents. It is important to note that
the set

{
C1, . . . ,Cj

}
is a set of all trusted agents evaluated against an identical job

context JC and opinion O regarding that job context (e.g. JC := storedata,O :=
availability)

M(O) =

⎡
⎢⎢⎢⎢⎢⎣

v1,1 v1,2 v1,3 . . . v1, j
v2,1 v2,2 v2,3 . . . v2, j
v3,1 v3,2 v3,3 . . . v3, j
...

...
...

. . .
...

vi,1 vi,2 vi,3 . . . vi, j

⎤
⎥⎥⎥⎥⎥⎦

(10)

The fuzzy value v(i, j) represents a computed trust value for an opinion over n execu-
tions between trusting agent α and trusted agent β . It is important to note that v(i, j)
can be x (null). Normally, v(i, j) will be computed using standard mean:

v(i, j) =
1
n

n

∑
a=1

Va(α,β ,O) (11)

However, the computation of v(i, j) can be controlled by the trusting agent using
a decision rule DR. For example, a trusting agent can decide that the preferable
way to compute the trust value is to weight each individual value against a time
performance analytics resulting in a time weighted average value. This allows the
trusting agent not only to rely on values supplied by other trusting agents but also
use sophisticated statistical measures to correct potential biased ratings. The opinion
matrices set MS containing all the matrices in the matrix pool (one per opinion),
defines the complete structure:

MS = {M(O1),M(O2), . . . ,M(On)} (12)

The Correlation Process (CP) involves matching each opinion defined in TDS
with its historical references in the OMs and calculating the trust value for that
opinion. Each TDS opinion type O is routed via the MP in order to return a cor-
respondent OM. The CP examines the opinion’s source nodes (O(Se),O(Sr)) and
their weight factors (W (Se),W (Sr)). For each trusted agent β , the CP generates two
vectors (Vβ (Se),Vβ (Sr)) one for holding trust values by other trusting agents and the
other for the current trusting agent. The trust value formula for an opinion is done
in the following way:

OVβ =
WVβ (Se)+W ∑n−1

i=0 Vβ (Sr)

∑n
i=0 W (S)

(13)

Reputation-Policy Trust Model for Grid Resource Selection 203

An identical calculation is performed on a set of opinions yielding overall trust value
for a trusted agent. This is repeated for all other trusted agents in the OMs which
are matched DRs to return a subset of potential trustful resources for selection. The
following subsection describes the CP in greater depth.

4.3 Correlation Process (CP)

Algorithm 1: Correlation Process Algorithm(O, R, P)

SzO: size of O1

SzR: size of R2

Weight: opinion weight3

OT[SzR]: opinion tuple4

OSM[SzO][SzR]: opinion summary matrix5

RTV[SzR]: resource trust vector6

RVM: resource value mapping7

foreach opinion in O do8

OT ← fork child process(opinion, R, P)9

for i ← 0 to SzR−1 do10

OT [i] ← Multiply(OT [i],weight)11

end12

OSM ← Put(OT)13

end14

if all child processes returned then15

for row ← 1 to SzO−1 do16

pre ← OSM[row−1]17

cur ← OSM[row]18

for col ← 0 to SzR−1 do19

cur[col] ← Sum(cur[col], pre[col])20

end21

OSM[row] ← cur22

end23

RTV ← OSM[SzO−1]24

for i ← 0 to SzR−1 do25

RV M ← Put(R[i],RTV [i])26

end27

end28

return RVM29

The CP is modeled as a multithreaded algorithm. It is supplied with three argu-
ments: O, R and P. O represents a set of opinion nodes {O1, . . . ,On} extracted from
the TDS, R represents a set of resources {R1, . . . ,Rn} denoted by resource identi-

204 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

fiers and P represents arbitrary processing instructions extracted from the reputation
query. Processing instructions dictate context factors (e.g. time fragment, trust de-
cay function, etc.) which influence the values contained by an opinion matrix.
During the first step (Algorithm 1, lines 8-14), the CP iterates through the opinion
set. For each opinion O, the CP forks a child process, passing the opinion and a
reference to R and P into its address space (Algorithm 1, line 9). Each child pro-
cess operates on a single opinion by contacting the metrics pool MP to return a
correspondent opinion matrix OM (Algorithm 2, line 10).

Algorithm 2: Child Process Algorithm(opinion, R, P)

Type: opinion type1

ExV: experience value2

ExW: experience weight3

ReV: reputation value4

ReW: reputation weight5

SzR: row count of OM6

SzC: column count of OM7

OM[SzR][SzC]: opinion matrix8

OT[SzC]: opinion tuple9

OM[SzR][SzC] ← MetricsPool(GetOpinionMatrix(Type,R,P))10

for col ← 0 to SzC−1 do11

row ← 012

ExV ← OM[row][col]13

ReV ← 014

for row ← 1 to SzR−1 do15

ReV ← Sum(Rev,OM[row][col])16

end17

OT [col] ← Sum(Multiply(ExV,ExW),Multiply(ReV,ReW))18

end19

return OT20

The opinion matrix OM consists of rows and columns representing trusting
agents and resources respectively. The computation of the accumulated value OM(i, j)
is dictated by the opinion type routed to the metrics pool, the volume of historical
rating data and the processing instructions P. The first row of OM[0] contains expe-
rience values supplied by the current trusting agent while the rows OM[1→ SzR−1]
contain reputation values supplied by peer trusting agents. For each column col in
OM, the experience and reputation values are extracted. The experience value ExV
is extracted by referencing to the first row of each col (Algorithm 2 line 13) while
the reputation value is extracted by summarizing the values at row to SzR− 1 (Al-
gorithm 2 lines 15-17). Finally, each value (ExV , ReV) is multiplied with its corre-
spondent weight factor (ExW , ReW) and the products of these multiplications are
summarized and stored in OT [col] (Algorithm 2 line 18).

Reputation-Policy Trust Model for Grid Resource Selection 205

For each tuple returned by a child process, the correlation process multiplies each
opinion trust value with its weight (Algorithm 1 lines 10-12) and inserts the updated
tuple into the opinions summary matrix OSM (Algorithm 1 line 13). The opinion
summary matrix OSM consists of rows and columns representing opinions and re-
sources respectively. The accumulated value OSM(i, j) represents a distinct opinion
referencing a particular trusted agent. The second step commences once all child
processes have returned to the parent process. During this step, each row value in
the OSM is iteratively summarized with its previous row row− 1 and restored in
OSM[row](Algorithm 1 lines 15-23). As a result of the calculation, the overall trust
value for each resource is contained in the last row of OSM (SzO− 1). This row
is copied into the resource trust vector RTV (Algorithm 1 line 24). The third step
involves populating the RV M by iterating through each resource, inputting the re-
source id as a key and the resource value from RTV as value. The CP algorithm
returns a hash table structure containing resource identifiers as table keys and over-
all trust values as table values (Algorithm 1 lines 25-17). It is important to note that
the CP is not involved in applying decision rules to each resource. It is merely con-
cerned with calculating a trust value for each given resource identifiers. Once the
CP is returned to the reputation algorithm, decision rules can be set based on the
calculated values and return a complete trust report to the calling trusting agent.

5 Conclusions

This paper presented a novel approach for managing trust in Grid computing. While
current Grid reputation-based models offer a single, community-based determinis-
tic algorithm for computing trust, the reputation-policy trust model allows heuristic
fine-grained resource selection based on a trust decision strategy defined by a trust-
ing agent as opposed to the reputation algorithm. This grants a trusting agent to
subjectively define trust decision strategy using opinions, sources and rules. The in-
ternal artifacts of the model TDS, OM and CP were proposed in order to support
trust data management and cooperation between entities on the Grid. Future work
should concentrate on deriving a reputation-policy service architecture based on the
presented reputation-policy model. Substantial considerations will be made in order
to apply the architecture and evaluate it using a rich execution environment, such as
the NGS P-GRADE portal [10].

References

1. Diego Gambetta. Trust: Making and Breaking Cooperative Relations, Chapter Can We
Trust Trust?, pages 213-237. Department of Sociology, University of Oxford, 1988.
http://www.sociology.ox.ac.uk/papers/gambetta213-237.pdf

2. A.Abdul-Rahman and S.Hailes. Supporting trust in virtual communities. In Proceedings of the
Hawaii International Conference on Systems Sciences 33, 2000.

206 Yonatan Zetuny, Gabor Terstyanszky, Stephen Winter and Peter Kacsuk

3. K.Aberer and Z.Despotovic,Managing trust in a peer-2-peer information system. In Proceed-
ings of 10th International Conference on Information and Knowledge Management, 2001.

4. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications,
15(3):200-222, 2001.

5. CoreGrid. D.ia.03 survey material on trust and security. Technical Report D.IA.03, CoreGrid,
October 2005.

6. Reputation-based trust. management systems and their applicability to grids. CoreGRID.
Technical Report TR-0064, 2006.

7. V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski et al. Security for Grid Ser-
vices. In Proceedings of 12th IEEE International Symposium on High Performace Distributed
Computing. IEEE Computer Society Press, 2003.

8. B. Alunkal, I. Veljkovic, G. von Laszewski, and K. Amin. Reputation-Based Grid Resource
Selection. In Workshop on Adaptive Grid Middleware, 2003.

9. F. Kerschbaum, J. Haller, Y. Karabulut, and P. Robinson. Pathtrust: A trust-based reputation
service for virtual organization formation. In iTrust2006, 4th International Conference on
Trust Management, Vol.3986, Lecture Notes in Computer Science, pp. 193-205. Springer,
2006.

10. NGS P-GRADE portal, Web page. Available: http://www.cpc.wmin.ac.uk/cpcsite/index.php

Author Index

Abdyazdan, M. 105
Ahmad, I. 115
Aloisio, G. 63
Alvi, A. 115
Ambrosi, E. 189
Ba a, P. 43
Balaton, Z. 3
Balint, T. 77
Banciu, D. 77
Blanquer, I. 167
Bosa, K. 51
Cristea, V. 129
Dafouli, E. 93
Farkas, Z. 27
Fiore, S. 63
Georgakopoulos, K. 37
Gombás, G. 3
Helmy, T. 115
Hernandez, V. 167
Jurkiewicz, J. 43
Kacsuk, P. 3, 27, 179, 195
Kelley, I. 13
Kiss, T. 155
Klasky, S. 143
Kokkinos, P. 93
Kukla, T. 155
Leordeanu, C. 129

Margaritis, K. 37
Marosi, A. Cs. 3
Moscaliuc, B. 77
Negro, A. 63
Nowi ski, K. 43
Pasian, F. 189
Podhorszki, N. 143
Pop, F. 129
Rahmani, A. M. 105
Rubio, M. 27
Sajadah, K. 179
Schreiner, W. 51
Sebestyen, G. 77
Sebestyen, A. 77
Segrelles, D. 167
Stratan, C. 129
Taffoni, G. 189
Taylor, I. 13
Terstyansky, G. 179, 195
Torres, E. 167
Vadacca, S. 63
Varvarigos, E. 93
Vuerli, C. 189
Winter, S. 179, 195
Zetuny, Y. 195

